Mamba 架构+医学图像分割 25年必将迎来新爆发!

2024深度学习发论文&模型涨点之——曼巴+医疗图像分割

曼巴(Mamba)结合医疗图像分割是一种新兴的技术,曼巴架构以其在处理长序列和全局上下文信息方面的能力以及作为状态空间模型的计算效率的提高而闻名。它能够有效地建模医学图像中的长程依赖性,这对于精确分割是一个关键方面。

比如Mamba-UNet是一种新颖的架构,它结合了U-Net和曼巴的能力。这种架构采用了基于纯视觉曼巴(VMamba)的编码器-解码器结构,并注入跳跃连接以保留不同规模网络的空间信息。这种设计促进了全面的特征学习过程,捕获医学图像中复杂的细节和更广泛的语义上下文。

我整理了一些曼巴+医疗图像分割【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取

论文精选

论文1:

Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation

Mamba-UNet:用于医学图像分割的UNet风格的纯视觉Mamba

方法

  • 纯视觉Mamba(VMamba)基础的编码器-解码器结构:采用基于VMamba的编码器-解码器结构,通过跳跃连接保留不同尺度上的空间信息。

  • 特征学习:通过综合特征学习过程,捕获医学图像中的复杂细节和更广泛的语义上下文。

  • 新型集成机制:在VMamba块内引入新型集成机制,确保编码器和解码器路径之间的无缝连接和信息流动。

图片

创新点

  • 结构设计:Mamba-UNet在ACDC MRI心脏分割数据集和Synapse CT腹部分割数据集上的表现超过了多种UNet变体,具体表现为在相同超参数设置下的性能提升。

  • 性能提升:在ACDC数据集上,Ma

### Mamba 医学图像分割 示例代码 为了展示如何利用Mamba技术进行医学图像分割,下面提供了一个简化版的Python代码示例。此代码基于LightM-UNet框架进行了改进,旨在提高处理效率并增强特征提取能力。 ```python import torch from torch import nn, optim import torchvision.transforms as transforms from PIL import Image class LightM_UNet(nn.Module): def __init__(self, in_channels=1, out_channels=1): super(LightM_UNet, self).__init__() # 定义编码器部分 self.encoder = nn.Sequential( nn.Conv2d(in_channels, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2) ) # 中间层 self.middle = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) # 解码器部分 self.decoder = nn.Sequential( nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) # 输出层 self.out_conv = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): encoded_features = self.encoder(x) mid_features = self.middle(encoded_features) decoded_features = self.decoder(mid_features) output = self.out_conv(decoded_features) return output def preprocess_image(image_path): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) image = Image.open(image_path).convert('L') # 转换成灰度图 tensor_image = transform(image).unsqueeze_(0) # 添加批次维度 return tensor_image if __name__ == "__main__": model = LightM_UNet().cuda() if torch.cuda.is_available() else LightM_UNet() optimizer = optim.Adam(model.parameters(), lr=1e-4) criterion = nn.BCEWithLogitsLoss() sample_input = preprocess_image('./sample_medical_image.png') target_mask = preprocess_image('./target_mask.png') if torch.cuda.is_available(): sample_input, target_mask = sample_input.cuda(), target_mask.cuda() prediction = model(sample_input.float()) loss = criterion(prediction, target_mask.float()) print(f'Initial Loss: {loss.item()}') optimizer.zero_grad() loss.backward() optimizer.step() final_prediction = (torch.sigmoid(prediction) > 0.5).float() ``` 上述代码实现了基本的训练流程以及前向传播过程[^3]。需要注意的是,在实际应用中还需要考虑更多细节,比如数据预处理、损失函数的选择、评估指标的设计等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值