交叉注意力融合时域、频域特征的FFT + CNN -Transformer-CrossAttention电能质量扰动识别模型

往期精彩内容:

Python-电能质量扰动信号数据介绍与分类-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(四)基于CNN-BiLSTM的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(五)基于CNN-Transformer的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(六)基于扰动信号特征提取的超强机器学习识别模型-CSDN博客

电能质量Python实现全家桶-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的电能质量扰动识别模型-CSDN博客

基于FFT + CNN -Transformer时域、频域特征融合的电能质量扰动识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention电能质量扰动识别模型-CSDN博客

创新点:利用交叉注意力机制融合时频特征!

前言

本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-Transformer-CrossAttention模型对电能质量扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

Python-电能质量扰动信号数据介绍与分类_简述高频振荡、中频振荡、低频振荡的主频率范围与持续时间范围-CSDN博客

部分扰动信号类型波形图如下所示:

模型整体结构

模型整体结构如下所示,一维扰动信号经过FFT变换的频域特征以及信号本身的时域特征分别经过CNN卷积池化操作,提取全局特征,然后再经过Transformer-提取时序特征,使用交叉注意力机制融合时域和频域的特征,通过计算注意力权重,使得模型更关注重要的特征再进行特征增强融合,最后经过全连接层和softmax输出分类结果。

(1) 时域和频域特征提取:

 对时域信号应用FFT,将信号转换到频域。

 利用CNN对频域特征进行学习和提取。CNN的卷积层可以捕捉频域特征的局部模式。

(2) 特征Transformer 编码器层:

 将时域信号输入Transformer编码器层。Transformer编码器层可以有效地捕捉时域信号的长期依赖关系。

(3) 交叉注意力机制:

 使用交叉注意力机制融合时域和频域的特征。这可以通过计算注意力权重,使得模型更关注重要的

1 快速傅里叶变换FFT原理介绍

傅里叶变换是一种信号处理和频谱分析的工具,用于将一个信号从时间域转换到频率域。而快速傅里叶变换(FFT)是一种高效实现傅里叶变换的算法,特别适用于离散信号的处理。

第一步,导入部分数据,扰动信号可视化

第二步,扰动信号经过FFT可视化

电能质量扰动数据的预处理

2.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

2.2 制作数据集

制作数据集与分类标签

3 交叉注意力机制

3.1 Cross attention概念

  • Transformer架构中混合两种不同嵌入序列的注意机制

  • 两个序列必须具有相同的维度

  • 两个序列可以是不同的模式形态(如:文本、声音、图像)

  • 一个序列作为输入的Q,定义了输出的序列长度,另一个序列提供输入的K&V

3.2 Cross-attention算法 

  • 拥有两个序列S1、S2

  • 计算S1的K、V

  • 计算S2的Q

  • 根据K和Q计算注意力矩阵

  • 将V应用于注意力矩阵

  • 输出的序列长度与S2一致

在融合过程中,我们将经过FFT变换的频域特征作为查询序列,时序特征作为键值对序列。通过计算查询序列与键值对序列之间的注意力权重,我们可以对不同特征之间的关联程度进行建模。

4 基于FFT+CNN-Transformer-CrossAttention扰动信号识别模型

4.1 网络定义模型

注意:输入故障信号数据形状为 [64, 1024], batch_size=64,  ,1024代表扰动信号序列长度。

4.2 设置参数,训练模型

50个epoch,准确率达100%,用FFT+CNN-Transformer-CrossAttention融合网络模型分类效果显著,模型能够充分提取轴承故障信号的空间和时序特征和频域特征,收敛速度快,性能优越,精度高,交叉注意力机制能够对不同特征之间的关联程度进行建模,从故障信号频域、时域特征中属于提取出对模型识别重要的特征,效果明显。

4.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据整理如下:

在PyTorch中,如果你想在自注意力(Self-Attention)模块之前应用快速傅里叶变换(Fast Fourier Transform, FFT),首先你需要导入必要的库,如`torch.fft`。以下是一个简化的例子,展示如何在一个简单的Transformer块中添加FFT步骤: ```python import torch import torch.nn as nn from torch.nn.functional import softmax class CustomAttention(nn.Module): def __init__(self, d_model): super(CustomAttention, self).__init__() # 其他自注意力参数... def forward(self, query, key, value, use_fft=True): if use_fft: # 将输入数据从时域转换到频域 query = torch.rfft(query, signal_ndim=1) key = torch.rfft(key, signal_ndim=1) value = torch.rfft(value, signal_ndim=1) # 自注意力计算过程... # 注意,由于FFT会对序列进行并行处理,这里需要调整矩阵相乘的操作,例如使用`softmax`之前需要将维度还原 attn_weights = ... # 使用softmax等计算注意力权重 weighted_value = ... # 根据权重计算加权和 if use_fft: # 将结果从频域转换回时域 weighted_value = torch.irfft(weighted_value, signal_ndim=1, onesided=True) # 可能还需要其他操作... output = ... # 结合前向传播的结果 return output # 创建模型实例并使用 model = YourModelWithCustomAttention() query = ... # 输入查询张量 key = ... # 输入键张量 value = ... # 输入值张量 output = model(query, key, value, use_fft=True) ``` 在这个示例中,我们假设已经实现了常规的自注意力部分,并且`YourModelWithCustomAttention`是包含自注意力模块的完整模型。注意,由于FFT会改变数据的维度,所以在计算注意力权重之前和之后都需要进行适当的转换。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值