【火焰、烟雾数据集】
适用YOLOv8-YOLOv10、YOLO11、YOLO12
专为机器学习和目标检测算法而设计
共有21527张图片,只含fire的图片1164张,只含smoke的图片5867张
包含fire和smoke的图片4658张
fire标签14692个,smoke标签11865个
所有图像均根据YOLO格式(0和1之间的归一化坐标)进行标注
包括jpg图像数据集和归一化后的txt标注数据集
文章目录
YOLOv8 是一种先进的实时目标检测算法,继承了 YOLO 系列的优点,并在准确性和速度上进行了进一步优化。使用 YOLOv8 进行火焰和烟雾检测是一个非常实用的应用场景,尤其是在火灾早期预警系统中。
数据集准备
为了训练一个基于 YOLOv8 的火焰和烟雾检测模型,你需要准备或获取一个合适的数据集。这个数据集应该包含大量标记的图像,其中火焰和烟雾是被明确标注的目标对象。你可以考虑以下几个方面:
- 数据来源:可以利用公开的数据集,如火焰和烟雾检测相关的数据库,或者根据自己的需求自行收集并标注数据。
- 标注格式:YOLO 模型通常要求数据以特定格式进行标注,例如每张图片对应一个文本文件,里面包含了图片中每个对象的类别标签及其边界框的位置信息(中心点坐标、宽度和高度)。
- 数据增强:为提高模型的泛化能力,可以对原始数据集进行一系列的数据增强操作,比如旋转、翻转、缩放等。
使用 YOLOv8 训练模型
-
环境配置:确保你的开发环境中已经安装了 Python 和必要的库,如 PyTorch 等。然后克隆 YOLOv8 的官方仓库并安装所需的依赖项。
-
数据预处理:将你的数据集按照 YOLOv8 所需的格式进行整理,包括创建正确的目录结构、转换标注格式等。
-
模型训练:
- 根据你的任务修改配置文件(如
.yaml
文件),指定数据集路径、类别数量等参数。 - 使用命令行工具启动训练过程,比如
python train.py --img 640 --batch 16 --epochs 100 --data your_dataset.yaml --cfg yolov8s.yaml --weights '' --name flame_smoke_detection
。这里只是一个示例命令,实际参数需要根据你的具体情况调整。
- 根据你的任务修改配置文件(如
-
评估与测试:训练完成后,使用验证集或测试集评估模型性能,并通过一些未见过的样本测试模型的实际效果。
-
部署应用:将训练好的模型部署到实际应用场景中,实现火焰和烟雾的实时监测。