基于CNN-BiLSTM-Attention的时间序列预测模型python代码

      CNN-BiLSTM-Attention模型是一种在自然语言处理(NLP)任务中常用的强大架构,如文本分类、情感分析等。它结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制的优势,能够捕捉局部特征和序列数据中的长程依赖关系。

    CNN 主要由卷积层和池化层构成,其中卷积层利用卷积核进行电力负荷数据的有效非线性局部特征提取,池化层用于压缩提取的特征并生成更重要的特征信息,提高泛化能力。卷积神经网络作为一种深度学习模型,广泛应用于图像识别、目标检测、图像分割和自然语言处理等领域。CNN的设计灵感来源于生物视觉系统,通过模拟人类视觉处理的方式来实现对图像等数据的高效识别和处理。CNN的核心是卷积层,它通过卷积操作自动提取输入数据的空间层次特征,并通过池化层降低特征的空间尺寸,同时保留最重要的特征信息。在经过多层卷积和池化层之后,通常会有全连接层来产生最终的输出结果,如图像分类的类别标签 。CNN的工作原理主要包括以下几个关键步骤:

局部感受野:每个神经元只响应图像的一个小区域,这与人类视觉系统的工作原理相似 。

卷积操作:通过滑动窗口(卷积核)在输入图像上进行逐元素相乘然后求和的操作,以此提取图像的局部特征 。

激活函数:如ReLU,用于引入非线性,帮助网络学习更复杂的特征 。

池化层:通过最大池化或平均池化减少特征图的空间尺寸,降低计算量并提取重要特征 。

全连接层:在网络的末端,将提取的特征映射转化为最终输出,如分类结果 。

CNN的训练通常采用监督学习的方法,通过调整网络中的权重和偏置来最小化预测输出和真实标签之间的差异。在训练过程中,网络学习从简单到复杂的分层特征,低层可能学习到边缘等基础特征,而高层可能学习到更复杂的形状或纹理特征

    LSTM是一种特殊的递归神经网络(RNN),擅长捕捉时间序列中的长期依赖关系,通过引入遗忘门、输入门和输出门三种门的逻辑控制单元保持和更新细胞状态,加强了长期记忆能力,可以很好地解决RNN梯度消失与梯度爆炸的问题。LSTM 通过学习时序数据的长时间相关性,使网络可以更好、 更快地收敛,有助于提高预测精度。

     注意力机制(Attention Mechanism)是深度学习中的一种关键技术,它模仿了人类在处理大量信息时选择性集中注意力的能力。注意力模型在自然语言处理、图像识别、语音识别等多个领域都有广泛应用。

注意力机制的核心思想是通过权重(或分数)来表示模型对输入数据中不同部分的关注程度。这些权重通常通过一个可学习的方式计算得到,以反映不同输入部分对于当前任务的重要性。

基于此,笔者整理了基于CNN-BiLSTM-Attention时间序列预测模型python代码,包含python代码

和数据集,效果优异,拟合曲线如下图所示。

     希望对大家有所帮助,有兴趣的朋友,欢迎关注笔者主页,或至龚重号:年轻的战场ssd,回复CNN-BiLSTM-Attention的时间序列预测模型 。一起交流,学习进步!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值