15种先进的检索增强生成(RAG)技术

概述

在人工智能领域,从原型到生产的旅程充满挑战。虽然构建大型语言模型(LLM)、小型语言模型(SLM)或多模态应用的过程充满了兴奋,但要将这些原型转化为可扩展、可靠且生产就绪的解决方案,需要对其复杂性有深入理解。这个过程不仅仅涉及硬件扩展或算法优化,更是对数据、模型架构和实际应用需求之间关系的深度探讨。

RAG技术

在本文中,我们将深入探讨15种先进的检索增强生成(RAG)技术,这些技术能够帮助您将AI原型转化为生产级别的强大解决方案。这些技术不仅能够将外部知识整合到生成模型中,还能创建一个能在生产环境中稳定运行、实时优化性能并提供一致高质量输出的弹性架构。

1. 具有动态检索层的分层索引

在生产环境中部署基于RAG的系统时,一个关键挑战是从海量数据中高效检索信息。通过创建多个索引级别,利用动态检索层,可以大幅提升检索效率,确保只有最相关的数据被输入生成模型,减少延迟并提高响应质量。

2. 用于低延迟应用的上下文内存缓存

实时响应是许多生产环境中的关键需求。上下文内存缓存机制能够存储频繁查询的结果,并根据查询模式进行自我更新,从而显著减少检索时间,提升用户体验。

3. 跨模态语义对齐

对于多模态应用,确保不同模态(如文本、图像、视频)之间的信息语义对齐至关重要。通过使用共享潜在空间的技术,将不同模态的数据映射到同一基础上,可以提高RAG模型的输出连贯性和准确性。

4. 强化学习驱动的自适应检索模型

动态环境中,用户偏好和数据上下文不断变化,静态检索模型往往难以应对。引入强化学习(RL)驱动的自适应检索模型,能够随着时间的推移优化检索策略,保持系统的高相关性和准确性。

5. 通过实时数据源增强知识库

生产环境中,静态知识库容易过时。通过整合实时数据源,确保RAG系统的知识库能够动态更新,尤其适用于信息变化迅速的领域,如金融、新闻等。

6. 混合稀疏-密集检索机制

在检索中平衡精确度与召回率至关重要。结合稀疏方法和密集方法,能够在高效处理关键词的同时,通过语义理解增强数据的相关性,优化系统处理各种类型查询的能力。

7. 针对特定任务的检索组件微调

生产应用往往涉及特定领域的专业任务。通过在特定领域的数据集上微调检索组件,能够显著提高检索信息的相关性和精确性,确保生成输出更为准确和实用。

8. 智能查询重构

在生产中,用户查询可能模糊不清或措辞不当。通过智能查询重构技术,自动优化查询,确保检索过程返回的结果更加相关和准确。

9. 基于反馈的检索优化

用户反馈是完善RAG系统的宝贵资源。通过反馈循环持续优化检索策略,能够提高系统的个性化和效果,随着时间的推移不断微调系统。

10. 上下文感知的多跳检索

复杂查询通常需要从多个来源获取信息。通过上下文感知的多跳检索技术,可以遍历不同知识库,确保最终检索的集合全面且上下文相关,尤其适用于涉及复杂决策的应用。

11. 检索文档的动态重新排序

并非所有检索到的文档都同样有用。通过动态重新排序机制,根据文档与查询的相关性重新排序,确保最相关的信息被优先考虑用于生成模型。

12. 来源追踪和可审核的检索管道

在生产环境中,尤其是在金融或医疗等受监管的行业,透明度和问责制至关重要。通过实现来源追踪,确保每一条信息的检索和使用都有清晰的审计追踪。

13. 利用预训练语言模型增强检索

预训练语言模型(PLM)能够提供强大的语言表示,通过微调PLM生成更好捕捉用户意图的查询,能够显著提升检索结果的准确性。

14. 自动化知识库扩展

随着应用的扩展,对知识库的需求也会增加。通过自动化知识库扩展技术,主动识别并填补知识库中的空白,确保系统随着时间推移保持相关性。

15. 可扩展的微服务编排

在将RAG原型转化为生产解决方案时,确保架构的可扩展性至关重要。通过基于微服务的编排框架,将系统的不同组件解耦,能够优化资源分配,确保系统高效处理生产工作负载。

常见陷阱及避免方法

在将原型转化为生产的过程中,以下几个常见陷阱需特别注意:

  • 过度依赖静态数据:应整合动态数据源并定期更新知识库。

  • 忽视延迟优化:实施上下文内存缓存并优化检索算法。

  • 跨模态对齐不佳:使用跨模态语义对齐技术确保数据一致性。

  • 缺乏反馈循环:通过用户反馈持续优化系统。

  • 单体架构的局限性:采用微服务架构提升可扩展性。

结语

将LLM/SLM/多模态应用原型转化为生产就绪的解决方案并非易事,但通过上述技术,您可以构建一个强大、可扩展和高效的系统,满足生产需求,并提供一致、高质量的结果。创新的旅程充满挑战,但通过正确的策略,这将是一次飞跃,将您的AI应用置于行业的前沿。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 检索增强生成RAG技术发展历史 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了信息检索和自然语言生成技术,旨在提高对话系统和其他文本生成系统的性能。以下是关于这项技术发展的几个重要阶段: #### 初期探索与概念形成 早期的研究主要集中在如何有效地将外部知识融入到神经网络架构中去。传统的基于序列到序列(seq2seq)的方法虽然能够处理一定长度的上下文,但在面对大规模开放领域的问题时显得力不从心。为了克服这些局限性,研究者们开始尝试引入显式的记忆机制或利用预训练的语言模型作为编码器的一部分。 #### Advanced RAG 的提出与发展 随着需求的增长和技术的进步,在基础版Naive RAG的基础上进一步提出了Advanced RAG框架[^1]。这一版本不仅强化了原有的功能模块,还特别加入了Pre-Retrieval以及Post-Retrieval组件,使得整个流程更加完善高效。这标志着RAG体系结构的一个重要里程碑,因为它显著提升了跨文档推理能力,并改善了对于复杂查询的支持效果。 #### 实际应用场景中的成熟化 随着时间推移,越来越多的企业级应用采纳并优化了这种模式。例如,在构建大型企业内部的知识库问答平台或是客服机器人方面,RAG展现出了强大的优势[^2]。它允许开发者借助于成熟的搜索引擎技术先进的机器学习算法,实现精准的内容匹配和服务响应,从而为企业带来更高的运营效率和更好的用户体验。 ```python # Python代码示例:模拟简单的RAG工作原理 def rag_based_qa(query): retrieved_docs = retrieve_relevant_documents(query) generated_answer = generate_response(retrieved_docs) return post_process(generated_answer) def retrieve_relevant_documents(query): # 使用IR方法获取相关文档列表 pass def generate_response(docs): # 基于给定文档集合成答案 pass def post_process(answer): # 对生成的回答做最后润色调整 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值