AI Agent
(智能体)是能够感知环境、自主决策并执行动作的智能实体,它代表了AI从"被动回答"到"主动行动"的进化,正在成为大模型
时代最受关注的应用形态之一。
一、什么是AI Agent?
1.1 基本定义
AI Agent
(人工智能代理)是一种能够感知环境、自主决策并执行动作的智能实体。与传统AI系统不同,Agent
不仅能回答问题,还能主动完成一系列复杂任务。
简单来说,如果把大语言模型
(LLM
)比作一个"超级大脑",那么AI Agent
就是给这个大脑装上了"手脚"和"工具",让它能够像人类一样主动行动,而不仅仅是被动回答问题。
1.2 关键特性
-
✅ 自主性:能在没有人类直接干预的情况下运作
-
✅ 反应性:对周围环境和接收到的信息作出及时响应
-
✅ 目标导向:拥有明确的目标或任务,并为之努力
-
✅ 学习能力:通过经验不断改进自身的性能和策略
1.3 与传统AI的区别
传统AI:像个听话的工具,你说"跳",它就跳一下
AI Agent:像个有主动性的助手,你给个目标,它自己规划怎么跳、跳多高
举个例子,如果你对ChatGPT
说:"帮我写一篇关于气候变化的文章",它会直接生成一篇文章。但如果你对AI Agent
说:"帮我研究气候变化的最新进展",它会自己去搜索最新资料、分析不同观点、整理关键信息,最后生成一份完整报告。
二、AI Agent的组成部分
2.1 核心组件
AI Agent
通常由以下四个核心组件构成:
Agent = LLM + 记忆 + 规划技能 + 工具使用
1.大模型:提供核心的语言理解、推理与生成能力,是整个Agent的“大脑”。
2.任务规划:对复杂任务借助大模型进行分解、规划和调度,并及时观察子任务执行的结果与反馈,对任务及时调整。
3.工具使用:据决策结果执行具体的动作或指令,与外部工具(如API、数据库、硬件设备)进行交互,扩展智能体的能力,执行任务,相当于Agent的“手脚”。
4.记忆:存储经验和知识,支持长期学习,这是Agent的“存储器”,可用来存储短期的记忆(如一次任务过程中的多次人类交互)或长期记忆(如记录使用者的任务历史、个人信息、兴趣便好等)。
除此之外,通常Agent还需要提供一个直观的入口,让用户可以方便地给Agent下达指令或查看结果,这个入口可以是可视化的文字输入、语音输入,或者对外开放的API接口。
2.2 工作循环
AI Agent
的工作遵循一个基本循环:
1. 接收目标:人类给定任务目标
2. 观察环境:感知当前状态
3. 规划行动:决定下一步行动
4. 执行行动:调用工具或API
5. 观察结果:评估行动效果
6. 调整策略:根据反馈优化下一步
7. 循环直到目标达成
这个循环体现了AI Agent
的自主性和反应式架构
,它能够像人类一样通过不断试错来逼近目标,而非简单执行预设指令。
2.3 关键能力
现代AI Agent
的三大关键能力:
-
根据经验调整行为
-
通过
上下文学习
(In-Context Learning
) -
记忆重要经验
-
从反馈中学习
-
-
使用工具
-
搜索引擎
(获取实时信息) -
代码执行器
(编写并运行程序) -
API调用
(与其他服务交互) -
数据库查询
(检索信息)
-
-
规划能力
-
任务分解
(将复杂目标拆分为子任务) -
路径规划
(确定最佳执行顺序) -
资源分配
(合理利用可用工具) -
错误处理
(应对意外情况)
-
三、AI Agent的发展历程与趋势
3.1 发展阶段
AI Agent
的发展可以分为两个关键阶段:
基于规则和早期机器学习阶段
-
1997年:IBM的
深蓝
在国际象棋中战胜世界冠军,展示基于规则的AI在特定领域的潜力 -
2016年:谷歌的
AlphaGO
通过深度学习
和蒙特卡洛树搜索
战胜围棋高手
这一阶段的AI Agent
主要专注于特定领域的任务,能力有限,缺乏通用性。
基于大语言模型的快速发展阶段
-
2018年:谷歌发布
BERT
模型,开启大语言模型时代 -
2019年:OpenAI推出
GPT
系列,提升AI Agent的文本生成和知识储备能力 -
2023年:
LLaMA
、BLOOM
等开源大模型降低行业门槛,促进技术生态多元化 -
2023年:
AutoGPT
等基于LLM的Agent框架出现,实现从被动执行到主动工作的转变
这一阶段的突破在于,大语言模型
(LLM
)为AI Agent
提供了强大的通用理解能力,使其不再局限于单一任务。
3.2 技术演进
AI Agent
技术的演进主要体现在以下几个方面:
-
从强化学习到LLM驱动
-
传统Agent:需要通过
强化学习
针对特定任务训练 -
现代Agent:利用
LLM
的通用能力,无需针对每个任务重新训练
-
-
从单一任务到通用能力
-
早期:一个Agent只能完成一种任务(如下棋)
-
现在:一个Agent可以处理多种不同类型的任务
-
-
从简单反应到复杂规划
-
过去:基于简单规则的反应式行为
-
现在:能够进行多步骤规划和推理
-
3.3 未来趋势
根据Gartner
预测,Agentic AI
是2025年十大技术趋势之一,到2028年,至少有15%的日常工作决策将由Agentic AI
自主完成。未来发展趋势包括:
-
更强的自主性与智能化
-
更深入的人类意图理解
-
更强的逻辑推理能力
-
更复杂的任务处理能力
-
-
深度行业化与定制化
-
针对特定行业的专业Agent
-
个性化的用户适配
-
-
多模态交互能力
-
结合语音、视觉、触觉等多种感官输入
-
更自然的人机交互体验
-
-
持续学习和自适应能力
-
从经验中不断学习
-
适应环境变化
-
自我优化策略
-
-
伦理与法规的完善
-
隐私保护机制
-
安全防护措施
-
责任归属框架
-
四、AI Agent的应用场景
开始介绍应用场景之前我先举个例子:
简单的说,大模型就像一个“超级大脑”,知识丰富、能力强大,但它的问题是“只懂回答,不懂行动”。你可以让它生成一篇文章、回答一个问题,但如果你希望它主动完成一系列复杂任务,仅靠大模型自身是不够的。比如,你可以问大模型:
prompt:“如何调查与获取竞争对手产品的信息?”
甚至也可以结合RAG让大模型来回答:
prompt:“总结我们公司最新某某产品的特点?相比竞品的优势点。”
但是如果你让大模型来帮你完成如下任务:
prompt:“对比A公司竞品与我公司产品的差异,把结果发送到市场负责人的邮箱。“
这时候大模型就无能为力了。原因是它只有聪明的”大脑“,但却没有”手脚“、也没有”工具“,因此无法自主的完成任务。所以AI需要这样的进化:
这就是为什么需要Agent —— 因为我们需要AI不仅是被动的回答问题,更需要能够主动的解决问题。
接下来介绍哪些应用场景。
4.1 个人助理
-
智能日程管理:自动安排会议、提醒重要事项
-
信息管理:整理邮件、筛选重要信息
-
个人财务:监控支出、提供理财建议
-
健康管理:跟踪健康数据、提供健康建议
示例:
用户:"帮我安排下周的行程,包括与客户的会面和健身时间"
Agent:[自动查看日历、分析空闲时段、考虑通勤时间,最终生成合理安排]
4.2 企业应用
-
智能客服:全天候解答客户问题、处理订单、提供物流状态
-
数据分析:自动收集、处理和分析业务数据,生成报告
-
流程自动化:自动执行重复性工作流程
-
决策支持:提供数据驱动的业务建议
示例:
企业:"分析上季度销售数据,找出表现最好的产品线"
Agent:[自动连接数据库、清洗数据、进行统计分析、生成可视化报告]
4.3 创意与内容创作
-
内容生成:自动创建文章、图片、视频等内容
-
创意辅助:提供创意灵感、改进创意方案
-
多媒体编辑:自动编辑和优化媒体内容
-
内容策划:根据受众偏好规划内容
示例:
创作者:"为我的新产品策划一个社交媒体营销方案"
Agent:[分析目标受众、研究竞品、设计内容日历、生成示例帖子]
4.4 研发与科研
-
代码开发:自动编写、测试和优化代码
-
实验设计:规划科学实验流程
-
文献研究:收集和分析研究文献
-
数据处理:清洗、分析实验数据
示例:
研究员:"帮我设计一个实验来测试这个新假设"
Agent:[查阅相关文献、设计实验方案、生成所需材料清单、预估时间和成本]
4.5 教育与学习
-
个性化辅导:根据学生能力提供定制化学习内容
-
答疑解惑:回答学习问题,提供详细解释
-
学习规划:设计学习路径和计划
-
知识评估:测试学习成果,提供反馈
示例:
学生:"帮我制定一个三个月的考研复习计划"
Agent:[分析考试要求、评估当前水平、设计阶段性目标、生成详细学习计划]
4.6 其他领域
-
医疗辅助:辅助诊断、患者监护、医疗记录管理
-
金融服务:风险评估、投资分析、自动化交易
-
智能家居:环境控制、安全监控、能源管理
-
游戏与娱乐:创造逼真的
NPC
、自适应游戏体验
五、AI Agent的基本原理
原理部分不详细,后面我会出一篇AI Agent原理篇,大家通过这部分可以先了解下。
5.1 工作原理
AI Agent
的工作原理可以概括为以下步骤:
-
输入理解:Agent首先借助大模型对用户输入指令进行理解和解析,识别任务目标和约束条件。
-
任务规划:基于理解的目标,Agent会规划完成任务的步骤,并决定采取哪些行动。这可能涉及将目标分解成多个子任务,确定任务优先级与执行顺序等。
-
任务执行与反馈:通过大模型或外部工具完成每个子任务;在此过程中,Agent会搜集与观察子任务结果,及时处理问题,必要时对任务进行调整。
-
任务完成与交付:将任务的结果汇总并输出。
5.2 技术实现
现代AI Agent
的技术实现主要基于以下几个方面:
LLM作为核心大脑
大语言模型
(如GPT-4
、Claude
、Gemini
等)提供了强大的语言理解、推理和生成能力,使Agent能够:
-
理解复杂指令
-
进行多步骤推理
-
生成自然语言响应
-
规划任务执行路径
提示工程(Prompt Engineering)
通过精心设计的提示词,引导LLM扮演Agent角色:
-
角色定义(如"你是一个助手")
-
能力描述(如"你可以使用以下工具")
-
行为规范(如"先思考再行动")
-
输出格式(如
JSON
结构化输出)
工具使用框架
为Agent提供调用外部工具的能力:
-
工具定义
(名称、描述、参数) -
工具选择
(从多个工具中选择合适的) -
工具调用
(传递参数、获取结果) -
结果解析
(理解工具返回的信息)
记忆管理
帮助Agent维护对话历史和重要信息:
-
短期记忆
(当前会话) -
长期记忆
(向量数据库存储) -
记忆检索
(相关信息提取) -
记忆总结
(压缩冗长历史)
5.3 技术挑战
当前AI Agent
仍面临一些技术挑战:
-
幻觉问题:LLM可能生成不准确或虚构的信息
-
规划不足:复杂任务的规划能力有限
-
工具使用不稳定:工具调用可能出错或不一致
-
上下文长度限制:无法处理过长的历史记录
-
安全与伦理问题:可能执行有害指令或泄露敏感信息
六、Agent、AIGC与AGI的区别
6.1 概念对比
特征/概念 | AGI (人工通用智能) | AIGC (人工智能生成内容) | 智能体( |
---|---|---|---|
定义 | 拥有像人类一样广泛智能能力的机器,能够处理各种复杂任务和学习新技能 | 利用AI技术生成各种类型的内容,如文字、图片、音乐、视频等 | 能够自主感知环境、做出决策并采取行动的计算实体 |
目标 | 实现类似人类的通用智能,能够适应多种场景和任务 | 高效生成高质量的内容,满足用户的各种内容需求 | 自主完成复杂任务,通过工具调用和决策实现目标 |
核心能力 | 通用学习、推理、规划、创造力,能够跨领域应用 | 内容生成能力,包括文本创作、图像生成、音乐创作等 | 自主决策、环境感知、工具调用和任务规划 |
应用场景 | 理论研究阶段,未来可能应用于教育、医疗、科研等广泛领域 | 内容创作(新闻、文学、艺术)、广告、教育、娱乐等 | 任务自动化(如文档处理、信息检索)、智能助手、复杂任务规划等 |
技术难度 | 极高,目前仍处于研究阶段,尚未实现 | 相对成熟,已有大量应用(如 | 中等,随着大模型的发展,Agent技术正在快速进步 |
是否依赖大模型 | 理论上需要更强大的模型和架构,目前尚未实现 | 通常依赖 | 基于大模型的Agent(如 |
举例 | 未来可能出现的"全能AI助手",能处理各种复杂问题 | ChatGPT 生成文章、 | AutoGPT 、 |
6.2 关系解析
AGI(人工通用智能)
AGI
是一个宏大的目标,代表着能够像人类一样思考和学习的通用人工智能。它是AI发展的终极形态,目前仍处于理论研究阶段。
AGI
的特点:
-
跨领域通用能力
-
自主学习新技能
-
抽象思维和创造力
-
情感理解和社交能力
AIGC(人工智能生成内容)
AIGC
专注于内容创作领域,是AI在创意生产方面的应用。它利用生成式模型创造文本、图像、音频、视频等内容。
AIGC
的特点:
-
高效内容生成
-
创意辅助
-
个性化定制
-
多模态输出
Agent(智能体)
Agent
强调的是自主行动能力,它不仅能理解和生成内容,还能主动规划和执行任务。Agent是AGI路径上的重要一步。
Agent
的特点:
-
自主决策
-
工具使用
-
任务规划
-
环境交互
6.3 形象比喻
如果用餐厅比喻这三个概念:
-
**
AGI
**:全能的餐厅老板,能管理餐厅的方方面面,从菜单设计到员工管理,从顾客服务到财务核算,样样精通。 -
**
AIGC
**:餐厅的创意厨师,能根据顾客的口味和要求,创造出各种美味的菜品,还能设计出好看的菜单。 -
**
Agent
**:餐厅的服务员,能感知顾客的需求,主动提供服务,从接待到点餐,从上菜到结账,全程自主完成。
七、结语:AI Agent的未来展望
AI Agent
代表了人工智能从"被动工具"到"主动助手"的重要进化。随着大语言模型
技术的不断进步,AI Agent
的能力将持续增强,应用场景也将不断扩展。
未来,我们可能会看到:
-
个性化Agent:根据用户习惯和偏好定制的个人助理
-
专业领域Agent:针对特定行业和领域的专业智能体
-
Agent生态系统:多个Agent协同工作,形成复杂的智能网络
-
人机协作新模式:Agent不再是简单的工具,而是人类的合作伙伴
尽管AI Agent
技术仍面临诸多挑战,但它无疑代表了AI应用的未来方向。随着技术的不断成熟,AI Agent
将在提升生产力、创新解决方案和改善生活质量方面发挥越来越重要的作用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓