都说本地部署大模型是鸡肋,真的是这样吗?今天,咱们就来实际测试一下,看看Qwen3小参数版本在本地部署后的表现究竟如何。
为什么有人觉得本地部署大模型是鸡肋?
一方面,本地部署需要一定的技术门槛,从环境配置到模型安装,每一步都有可能出现问题。
另一方面,大模型对硬件要求较高,尤其是对GPU的性能和显存容量有一定要求。如果硬件不达标,模型运行起来可能会很慢,甚至根本无法运行。
而且,现在有很多方便易用的云端大模型服务,直接调用就能使用,相比之下,本地部署似乎显得有些麻烦。
本地部署大模型的优势
- 数据安全性更高:不用担心数据上传到云端会有隐私泄露的风险。
- 网络独立性:在一些网络不稳定的环境下,本地模型可以不受网络影响,随时使用。
- 个性化定制:对于一些有特定需求,想要对模型进行个性化定制和微调的用户来说,本地部署也是更好的选择。
Qwen3小参数版本介绍
Qwen3系列模型是阿里云推出的新一代开源大语言模型,涵盖了多种参数规模的模型,从0.6B到235B不等。今天我们测试的小参数版本,比如Qwen3 - 4B,官方宣称它能匹敌Qwen2.5 - 72B - Instruct的性能。
如果真能如此,那在本地部署这样一个小参数模型,既能满足一定的使用需求,又对硬件要求相对较低,说不定能打破本地部署大模型是鸡肋的说法。实测环节
部署过程
我们使用Ollama这个轻量级、可扩展的开源框架来部署Qwen3模型。Ollama支持多种操作系统,包括macOS、Windows和Linux。
- 安装好Ollama后,在终端中输入指令
ollama run qwen3:4b
,就可以开始部署Qwen3 - 4B模型。 - 如果出现“model not found”提示,执行
ollama pull qwen3:4b
先拉取模型。 - 在部署过程中,我们可以观察到模型文件逐渐下载并配置,只要网络稳定,这个过程不会花费太长时间。
交互工具配置
手搓了一个模型测试工具,可以同时测试多个模型和结构比较,方面判断模型的性能。
使用方法:
- 启动后,点击“添加测试模型”按钮。
- 配置本地模型参数:
-
- 模型类型选择“Ollama本地模型”
- 从下拉列表选择模型
- 点击“添加”,添加模型
- 配置云端模型参数:
-
- 模型类型选择“DeepSeek”
- 填写Api key和模型名称
- 点击保存即可
- 如果未找到本地模型,需检查:
- Ollama服务是否在运行
- 网络权限是否开放
性能测试
- 响应速度:每个模型都有响应时间显示,为了避免相互影响,所有的测试都是串行进行的。
- 回答准确性和质量:对模型能力进行10个方面的测试,看看哪些方面时候我们自己的场景,可以进行评估和选择。
- 代码能力:让模型生成一段Python代码,测试代码生成实力。
测试结论
通过这次实测可以发现,Qwen3小参数版本在本地部署后,并非如传言中那样是鸡肋。它在响应速度、回答准确性、代码能力和多语言能力等方面都有不错的表现,能够满足日常使用、一般性知识查询以及大部分的工作需求。
本地部署带来的数据安全性和网络独立性等优势,也是云端服务无法比拟的。当然,它也有一定的局限性,比如在处理极其复杂和专业的问题时,可能不如大参数模型。
但总体而言,适合的就是最好的,对于那些对硬件要求有一定限制,又想在本地拥有一个功能较为全面的大语言模型的用户来说,Qwen3小参数版本是一个值得尝试的选择。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓