张宇1000题高等数学 第十、十一、十二章 一元函数积分学的应用——几何应用、积分等式与积分不等式、物理应用

目录

第十章 一元函数积分学的应用(一)——几何应用

A A A

3.双纽线所围成的区域面积用定积分表示为(  )
( A ) 2 ∫ 0 π 4 cos ⁡ 2 θ d θ ; (A)2\displaystyle\int^{\frac{\pi}{4}}_0\cos2\theta\mathrm{d}\theta; (A)204πcos2θdθ;
( B ) 4 ∫ 0 π 4 cos ⁡ 2 θ d θ ; (B)4\displaystyle\int^{\frac{\pi}{4}}_0\cos2\theta\mathrm{d}\theta; (B)404πcos2θdθ;
( C ) 2 ∫ 0 π 4 cos ⁡ 2 θ d θ ; (C)2\displaystyle\int^{\frac{\pi}{4}}_0\sqrt{\cos2\theta}\mathrm{d}\theta; (C)204πcos2θ dθ;
( D ) 1 2 ∫ 0 π 4 ( cos ⁡ 2 θ ) 2 d θ ; (D)\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0(\cos2\theta)^2\mathrm{d}\theta; (D)2104π(cos2θ)2dθ;

  双纽线的极坐标方程为 r 2 = cos ⁡ 2 θ r^2=\cos2\theta r2=cos2θ,根据对称性,所求面积为 S = 4 ⋅ 1 2 ∫ 0 π 4 r 2 d θ = 2 ∫ 0 π 4 cos ⁡ 2 θ d θ S=4\cdot\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{4}}_0r^2\mathrm{d}\theta=2\displaystyle\int^{\frac{\pi}{4}}_0\cos2\theta\mathrm{d}\theta S=42104πr2dθ=204πcos2θdθ,故应选 ( A ) (A) (A)。(这道题主要利用了极坐标求面积的公式求解

B B B

6.设 y = f ( x ) y=f(x) y=f(x)是由方程 arctan ⁡ x y = ln ⁡ x 2 + y 2 − 1 2 ln ⁡ 2 + π 4 \arctan\cfrac{x}{y}=\ln\sqrt{x^2+y^2}-\cfrac{1}{2}\ln2+\cfrac{\pi}{4} arctanyx=lnx2+y2 21ln2+4π确定的函数,且满足 f ( 1 ) = 1 f(1)=1 f(1)=1

(1)求曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , 1 ) (1,1) (1,1)处的曲率;

  对方程 arctan ⁡ x y = ln ⁡ x 2 + y 2 − 1 2 ln ⁡ 2 + π 4 \arctan\cfrac{x}{y}=\ln\sqrt{x^2+y^2}-\cfrac{1}{2}\ln2+\cfrac{\pi}{4} arctanyx=lnx2+y2 21ln2+4π两端关于 x x x求导,得 1 1 + ( x y ) 2 ⋅ y − x y ′ y 2 = 1 2 ⋅ 2 x + 2 y y ′ x 2 + y 2 \cfrac{1}{1+\left(\cfrac{x}{y}\right)^2}\cdot\cfrac{y-xy'}{y^2}=\cfrac{1}{2}\cdot\cfrac{2x+2yy'}{x^2+y^2} 1+(yx)21y2yxy=21x2+y22x+2yy,即 ( x + y ) y ′ = − x + y (x+y)y'=-x+y (x+y)y=x+y。再关于 x x x求导,得 ( 1 + y ′ ) y ′ + ( x + y ) y ′ ′ = − 1 + y ′ (1+y')y'+(x+y)y''=-1+y' (1+y)y+(x+y)y=1+y。将代入 x = 1 , y = 1 x=1,y=1 x=1,y=1,得 y ′ ( 1 ) = 0 , y ′ ′ ( 1 ) = 1 2 y'(1)=0,y''(1)=\cfrac{1}{2} y(1)=0,y(1)=21。所以,曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , 1 ) (1,1) (1,1)处的曲率为 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 = 1 2 k=\cfrac{|y''|}{\sqrt{[1+(y')^2]^3}}=\cfrac{1}{2} k=[1+(y)2]3 y=21

(2)求定积分 ∫ 0 1 x − f ( x ) x + f ( x ) d x \displaystyle\int^1_0\cfrac{x-f(x)}{x+f(x)}\mathrm{d}x 01x+f(x)xf(x)dx

  因为 y ′ = y − x x + y y'=\cfrac{y-x}{x+y} y=x+yyx在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 y ( 0 ) = 2 e − π 4 y(0)=\sqrt{2}e^{-\frac{\pi}{4}} y(0)=2 e4π,所以 ∫ 0 1 x − f ( x ) x + f ( x ) d x = − ∫ 0 1 f ′ ( x ) d x = f ( 0 ) − f ( 1 ) = 2 e − π 4 − 1 \displaystyle\int^1_0\cfrac{x-f(x)}{x+f(x)}\mathrm{d}x=-\displaystyle\int^1_0f'(x)\mathrm{d}x=f(0)-f(1)=\sqrt{2}e^{-\frac{\pi}{4}}-1 01x+f(x)xf(x)dx=01f(x)dx=f(0)f(1)=2 e4π1。(这道题主要利用了构造函数求解

10.如下图,阴影部分由曲线 y = sin ⁡ x ( 0 ⩽ x ⩽ π ) y=\sin x(0\leqslant x\leqslant\pi) y=sinx(0xπ),直线 y = a ( 0 ⩽ a ⩽ 1 ) y=a(0\leqslant a\leqslant1) y=a(0a1) x = π x=\pi x=π以及 y y y轴围成。此图形绕直线 y = a y=a y=a旋转一周形成旋转体。问 a a a为何值时,旋转体有最小体积、最大体积。

在这里插入图片描述


V = 2 ∫ 0 arcsin ⁡ a π ( a − sin ⁡ x ) 2 d x + ∫ arcsin ⁡ a π − arcsin ⁡ a π ( a − sin ⁡ x ) 2 d x = ∫ 0 arcsin ⁡ a π ( a − sin ⁡ x ) 2 d x + ∫ 0 π − arcsin ⁡ a π ( a − sin ⁡ x ) 2 d x , \begin{aligned} V&=2\displaystyle\int^{\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x+\displaystyle\int^{\pi-\arcsin a}_{\arcsin a}\pi(a-\sin x)^2\mathrm{d}x\\ &=\displaystyle\int^{\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x+\displaystyle\int^{\pi-\arcsin a}_0\pi(a-\sin x)^2\mathrm{d}x, \end{aligned} V=20arcsin

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值