来源 | 智合标准化建设
作者 | 智合标准中心
由中国电子商会归口管理,汇集众多企业、大模型专家提供支持,智合标准中心(北京之合网络科技有限公司)组织起草的《人工智能大模型私有化部署技术实施与评价指南》团体标准(以下简称《标准》)现已正式立项。这是国内首部针对AI大模型私有化部署的标准,目前该标准正在征集起草单位、起草人。
01
为什么要制定标准
人工智能大模型开启了人工智能发展的新阶段。当前,我国大模型技术快速发展,大模型应用正快速从通用领域向行业纵深渗透——私有化部署正逐渐成为企业大模型高效应用的核心路径。
然而,由于私有化部署涉及服务器配置、软件环境适配等多领域技术,以及硬件采购、软件授权和人力投入等多项成本开支,在缺乏统一技术框架和评价系统的情况下,企业面对众多厂商推出的技术指标各异、服务方案多元的部署方案时,往往暴露出技术选型混乱、算力资源错配、数据安全漏洞与合规隐患等痛点。亟待一部涵盖“关键技术标准”与“安全/治理标准”交叉领域的标准指引。
与此同时,为顺应以大模型为代表的新技术加速迭代趋势,加快构建满足人工智能产业高质量发展和“人工智能+”高水平赋能需求的标准体系,工信部等四部门联合印发《国家人工智能产业综合标准化体系建设指南(2024 版)》且已有多地政府积极响应。
基于此,《人工智能大模型私有化部署技术实施与评价指南》团体标准应运而生。本标准将梳理大模型私有化部署过程中的技术实施关键步骤与行业共识,对部署成果及质量形成有效的评价体系和改进机制,从而应对技术不确定性、满足行业需求、构建安全可信人工智能生态。
02
《标准》三大亮点
1.“选用+部署+优化”全流程要点覆盖
本标准统一了模型选用→资源规划→关键步骤→质量评价→持续优化的全流程要点,助力提升人工智能大模型私有化部署的高效性与可靠性。
-
选用阶段:标准提供模型选用的基本原则、行业共识以及选用流程,帮助企业根据实际需求选择大模型,提高模型选用的准确性和适配性。
-
部署阶段:从部署方式选择、资源规划与配置要点、现有系统的集成策略等方面出发,确保部署方案科学规范,指引企业能依循标准步骤开展工作,减少技术实施的盲目性和资源浪费。
-
后期优化:明确部署成功并进入常态化运维阶段后应注意的关键要点。确保模型性能、质量与安全性的持续改进。
2.“技术+安全+评价+案例”深度融合
技术实施是核心,安全保密是前提,质量评价是保障,行业案例是参考,通过四方面紧密结合,为大模型的私有化部署提供科学、可行且具有前瞻性的实施路径。
-
技术实施:本标准为大模型私有化部署全过程提供一整套方法与流程指导,明确部署各环节、优化技术方案,从而降低实施难度、提高部署效率,保障方案落地实施。
-
安全保密:标准以安全保密作为基本原则之一。强调在部署实施及后续运营过程中,必须严格保障数据、模型参数及生成内容的安全与保密,落实国家相关法律法规要求,确保系统安全、风险可控。
-
评价维度:构建科学严谨的评价框架和指标体系,通过标准化的评价方法,客观衡量大模型在功能、性能、安全与合规等方面的表现,为持续改进与后续优化提供数据支撑和决策依据。
-
行业案例:通过征集业内事业单位、联合行业头部资源,对企业、专家、从业者展开调研,提炼融合行业声音,反映真实案例需要。
3.“模型应用方+技术服务方+质量评价方”三方协作
从大模型应用方的实际需求、技术服务方的部署实施和质量评价方的反馈优化,共同构建三方协作的底层框架,确保指南能够真实反映行业现况和市场需求。
-
模型应用方:已在特定行业(如金融、医疗、制造、教育等)实施大模型私有化部署的企业和机构分享其实际应用场景与需求。
-
技术服务方:专注于人工智能大模型上下游技术开发、优化及部署硬件厂商和云厂商从技术角度交流与分享部署要点;
-
质量评价方:具备 AI 性能测试或质量评价及认证能力的质量评估机构、提供 AI 技术合规、数据隐私保护及咨询服务的法律服务机构,以及关注并提供 AI 技术绿色效能、能耗优化及可持续发展策略的可持续发展服务机构从多维角度入手对部署技术及方案进行评价。
03
《标准》基本架构
▶ 模型选用:流程类型介绍,确保模型契合
模型选用部分明确了基本原则和行业共识,以及包括需求分析、初步筛选、综合决策、二次筛选、模型验证等步骤的选用流程,帮助企业选择高效、安全、开源或轻量化的大模型,提高模型选用的准确性和适配性。
▶ 部署策略:规范部署策略,减少资源错配
通过系统梳理私有化部署实施流程,包括部署准备、模型测试、运行监控和优化调整等重要节点,涵盖硬件选型、软件配置、网络与安全设计等方面的技术要点,本节将引导企业科学选择部署策略,减少资源错配。
▶ 实施流程:各阶段工作要求,保证顺利有序
实施流程部分包含部署前准备、模型部署与测试、运行监测与调整、部署后维护优化等全流程工作要求,是企业规范实施的全流程指南。
▶ 评价维度:评估主要指标,衡量性能效益
本节规定了模型私有化部署完成后效果评估的主要指标,旨在全面衡量模型运行的性能、安全及经济效益。
▶ 评价方法:重点维度权重,促进持续优化
在上一节的基础上,评价方法部分更加侧重实践操作中应注意的评价重点、评价流程以及评价结果的流程规范,通过定期、系统地评价,推动部署的改进升级。
▶ 持续改进:优化策略指引,推动长期可靠
持续改进部分为组织制定长期改进策略与措施提供参考维度、指标。力在确保通过定期回顾,确保系统整体性能不断完善,具有更高的用户价值。
04
《标准》起草单位和起草人征集中
智合标准中心欢迎在私有化部署领域有行业影响力、美誉度的企业、认证咨询机构、研究机构、投资机构和专业人士的积极参与,成为《人工智能大模型私有化部署技术实施与评价指南》团体标准的起草单位和起草人!
【已参编单位】
-
公安部第三研究所
-
中国电子信息产业发展研究院(赛迪研究院)
-
信华信(大连)数字技术有限公司
-
积家传承创新(北京)科技有限公司
-
北京远舢智能科技有限公司
-
广西影迅物流有限公司
-
环网科技(广州)有限公司
-
中国科学院空天信息创新研究院
-
蚂蚁科技集团股份有限公司
-
浪潮软件科技有限公司
-
杭州玳数科技有限公司(袋鼠云)
-
陕西璇枢链网络科技有限公司
-
北京之合网络科技有限公司
-
更多单位确认中.....