GNN论文周报|来自斯坦福大学、里斯本大学、慕尼黑工业大学等机构前沿论文研究

图神经网络(GNN)是一类专门针对图结构数据的神经网络模型,在社交网络分析、知识图谱等领域中取得了不错的效果。近来,相关研究人员在GNN的可解释性、架构搜索、对比学习等方面做了很多探究。

本周精选了10篇GNN领域的优秀论文,来自斯坦福大学、里斯本大学、慕尼黑工业大学等机构。

为了方便大家阅读,只列出了论文标题、作者、ChatPaper综述等信息,如果感兴趣可复制链接查看原文,PC端数据同步(收藏即可在PC端查看),每日新论文也可登录小程序查看。

ChatPaper使用页:https://www.aminer.cn/chat/g/

1.An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment 论文详情页

https://www.aminer.cn/pub/64c09a963fda6d7f06e3e170/

这篇论文介绍了一种可解释的几何加权图注意力网络,用于识别与帕金森病 (PD) 步态障碍相关的功能网络。PD 的一个标志性症状是姿势反射的渐进丧失,这会导致步态困难和平衡问题。因此,识别与步态障碍相关的功能网络对于更好地理解 PD 的 Motor 进展非常重要,这将推动更有效和个人化治疗的发展。在这篇论文中,我们提出了一种名为 xGW-GAT 的可解释的、几何的、加权图注意力神经网络,以识别与 PD 步态障碍进展相关的功能网络。xGW-GAT 能够预测多分类的步态障碍,该模型使用 riemannian 空间中的对称正交矩阵来表示功能连接矩阵,以编码整个连接矩阵的 pairwise 相互作用。我们通过学习注意力掩码来实现个体和群组级别的可解释性。使用我们拥有的帕金森病的 rs-fMRI 数据集,xGW-GAT 成功地比现有方法表现更好,同时揭示了与步态障碍相关的临床相关的连接模式。该模型的源代码可以在 https://github.com/favour-nerrise/xGW-GAT 上访问。

2.Graph Neural Networks For Mapping Variables Between Programs - Extended Version 论文详情页

https://www.aminer.cn/pub/64c09a963fda6d7f06e3e10f/

这篇论文讨论了使用图神经网络 (GNNs) 来映射两个程序中的变量,以进行比较和分析。由于程序等价性问题的不可判定性,比较两个程序是一项具有挑战性的任务。通常,为了比较两个程序,需要将它们的变量集之间的关系建立起来。因此,映射变量两个程序对于执行程序等价性、程序分析、程序修复和克隆检测等任务非常有用。在本文中,我们提出了使用 GNNs 来基于两个程序的抽象语法树 (ASTs) 映射变量集的方法。为了展示变量映射的力量,我们展示了三个使用这些映射来解决程序修复中的常见和反复出现的错误的任务。实验结果表明,我们的方法能够在一个包含 4166 个错误/正确程序对的数据集中正确映射 83% 的测试数据。此外,我们的实验表明,当前最先进的程序修复方法在很大程度上依赖于程序的结构,只能修复大约 72% 的错误程序。相比之下,我们的方法基于变量映射,能够修复大约 88.5% 的错误程序。

3.Extended Graph Assessment Metrics for Graph Neural Networks 论文详情页

https://www.aminer.cn/pub/64b8b1c13fda6d7f062bb02e/

这篇论文介绍了在患者群重构为所谓人口图形时,可以将最初独立的数据点合并成一个 interconnected 的图形结构。这个人口图形可以使用图神经网络 (GNN) 用于医学下游任务。构建适当的图形结构是一个在学习过程 pipeline 中具有挑战性的步骤,可以严重影响模型性能。因此,已经引入了各种图形评估指标来评估图形结构。然而,这些指标仅限于分类任务和离散的邻接矩阵,仅涵盖一小部分真实世界应用。在本文中,我们介绍了扩展的图形评估指标 (GAMs),用于回归任务和连续的邻接矩阵。我们特别关注两种 GAM:homophily 和 cross-class neighbourhood similarity (CCNS)。我们扩展了 GAM 的概念到超过一个跳,定义了 homophily 用于回归任务,以及连续的邻接矩阵,并提出了一种轻量级的 CCNS 距离,适用于离散和连续的邻接矩阵。我们展示了这些指标与模型性能之间的相关性,在不同类型的医学人口图形和不同的学习设置中。

4.OpenGDA: Graph Domain Adaptation Benchmark for Cross-network Learning 论文详情页

https://www.aminer.cn/pub/64bdf76d3fda6d7f06fbcebc/

这篇文章提出了一个名为 OpenGDA 的图形领域适应度基准测试,用于跨网络学习任务。目前,评估图形领域适应度模型的主要限制在于两个方面:首先,它们主要测试在特定领域的跨网络节点分类任务上,而对于边缘和图级别的任务还没有得到充分的探索;其次,它们通常在有限的场景下测试,例如社交网络或引用网络,缺乏在更复杂的场景中验证模型的能力。为了全面地评估模型以提高它们在实际应用中的实用性,提出了 OpenGDA 基准测试。它提供了丰富的预处理和统一的 datasets,以支持不同类型的任务 (节点、边缘和图),这些数据集来自各种场景,包括 Web 信息系统和城市系统等。此外,它还集成了最先进的模型和标准化的端到端管道。OpenGDA 提供了一个易用、可扩展和可重现的基准测试,用于评估图形领域适应度模型。基准测试的实验结果表明,GDA 模型在实际应用中具有出色的表现,但仍然存在挑战。OpenGDA 将定期更新,包括新的数据和模型。

5.Multi-representations Space Separation based Graph-level Anomaly-aware Detection 论文详情页

https://www.aminer.cn/pub/64c09a963fda6d7f06e3e0fa/

这篇论文提出了一种基于多表示空间分离的图级别异常感知检测框架。以往的研究已经观察到异常图主要表现出节点级和图级别异常,但是这些方法在评估异常图时平等地对待这两种异常形式,而不同的异常图数据在节点级和图级别异常方面有不同的程度。此外,现有的方法很容易忽略与正常图仅有微妙差异的异常图。因此,本文提出了一种多表示空间分离的图级别异常感知检测框架。我们设计了一个异常感知模块来学习它们在异常图评估过程中的特定权重。我们还通过学习四种不同类型的加权图表示来分离正常和异常图表示空间,包括固定正常图、固定异常图、训练正常图和训练异常图。基于测试图的图形表示误差和正常和异常图表示空间的距离误差,我们可以准确地确定测试图是否异常。该方法在十个公共图数据集上与基准方法进行比较,结果表明其有效性。

6.Gaussian Graph with Prototypical Contrastive Learning in E-Commerce Bundle Recommendation 论文详情页

https://www.aminer.cn/pub/64c09a9c3fda6d7f06e3e8f0/

这篇论文介绍了在电子商务领域中使用基于均值的图形学习进行 Bundle 推荐的方法。现有的成功解决方案基于对比学习范式,使用图神经网络 (GNNs) 从用户级和 Bundle 级图形视图中学习表示,并使用对比学习模块增强不同视图之间的协作关联。然而,这些方法忽略了不确定性问题,因为在具有高度稀疏性或多样性的真实 Bundle 推荐场景中,缺乏具有区分性的信息,从而导致性能下降。此外,这些方法的实例级别对比学习无法区分语义上相似的负样本 (即采样偏差问题),从而导致性能下降。为了解决这些问题,本文提出了一种新的 Gaussian Graph with Prototypical Contrastive Learning(GPCL) 框架。具体来说,GPCL 将每个用户/Bundle/物品表示为一个高斯分布,而不是一个固定向量。我们还设计了一个原型对比学习模块来捕捉上下文信息,并缓解采样偏差问题。大量的实验结果表明,利用提出的组件,我们取得了与之前方法相比的新最佳性能,并在公共数据集上进行了验证。此外,GPCL 已经在真实电子商务平台上部署,并取得了显著的改进。

7.MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learning 论文详情页

https://www.aminer.cn/pub/64c09a963fda6d7f06e3e13a/

这篇论文研究了在图数据上使用无监督学习的方法时,出现外部不一致性 (OOD) 时的泛化问题。这种情况特别具有挑战性,因为图神经网络 (GNNs) 即使具有标签,也常被证明对分布差异敏感。为了解决这个问题,作者提出了一个“MARIO”模型无关的方案,以改善无监督图形对比学习的方法的 OOD 泛化能力。MARIO 引入了两个原则,旨在开发对分布差异具有鲁棒性的图形对比学习方法,以克服现有框架的局限性:(1) 信息瓶颈 (IB) 原则以获得可泛化的代表元;(2) 不变性原则,包括引入对抗数据增强来获得不变的代表元。据我们所知,这是第一个研究图形对比学习中的 OOD 泛化问题,并专注于节点级任务的研究。通过广泛的实验,作者表明他们的方法在 OOD 测试集上取得了最先进的性能,同时与现有的方案相比,在内部测试集上的性能保持稳定。该方法的源代码可以从 https://github.com/ZhuYun97/MARIO 上获取。

8.Spectral Normalized-Cut Graph Partitioning with Fairness Constraints 论文详情页

https://www.aminer.cn/pub/64bf48f93fda6d7f062746f3/

这篇论文介绍了一种名为“Spectral Normalized-Cut Graph Partitioning with Fairness Constraints”的新方法,用于解决具有敏感属性的个体分类问题。该方法将图划分为 k k k 个不相交的集群,以最小化每个集群与其他集群之间总边数的占比。新方法还考虑了公平性约束,以确保每个集群中不同群体的成员数量大致相等,同时最小化 Normalized-Cut 值。为了解决这个问题,作者提出了一种名为 FNM 的新 spectral 算法。在第一阶段,FNM 在原始图中添加了根据公平性准则的增广拉格朗日项,以获得更公平的节点嵌入。在第二阶段,作者设计了一种 rounding scheme,从公平的节点嵌入中生成 k k k个集群,有效地平衡了公平性和集群质量。通过在九个基准数据集上的全面实验,作者证明了 FNM 比三个基准方法表现更好。

9.Collaborative Graph Neural Networks for Attributed Network Embedding 论文详情页

https://www.aminer.cn/pub/64bf48f93fda6d7f0627469c/

本论文提出了一种名为“Collaborative Graph Neural Networks–CONN”的定制版 GNN 架构,用于处理具有属性的网络嵌入问题。传统的 GNN 方法主要关注网络结构,而对节点属性的利用则受到限制,因为它们仅在初始层作为节点特征使用。这种简单的策略限制了节点属性的增加,导致对于很少或没有邻居的未活动节点,其接收域受到限制。此外,大多数 GNN 方法的训练目标不包括节点属性,尽管研究表明恢复节点属性有益。因此,鼓励将节点属性深入嵌入到 GNN 的关键组件中,包括图卷积操作和训练目标。但是,这是一项非易性任务,因为合适的集成方式是必要的,以保持 GNN 的优点。为了解决这个问题,我们提出了“Collaborative Graph Neural Networks–CONN”架构,它通过选择性地从相邻节点和参与属性类别中扩散消息来提高模型容量,并通过交叉相关方式同时恢复节点到节点和节点到属性类别之间的相互作用。在真实世界网络的实验中,CONN 远远优于现有的嵌入算法。

10.QDC: Quantum Diffusion Convolution Kernels on Graphs 论文详情页

https://www.aminer.cn/pub/64bdf76d3fda6d7f06fbce4f/

这篇论文介绍了一种新的图卷积神经网络 (GCN) 模型,称为量子扩散卷积 (QDC) 模型。GCN 是一种用于图形数据的机器学习模型,通过聚合局部邻居的信息来完成预测任务。许多 GCN 可以被视为在图形上的一种广义扩散,并且已经投入大量工作来提高预测准确性,主要是通过改变消息传递的方式。在本文中,作者提出了一种新的卷积核,可以有效地重新布线,以适应顶点 Occupation Correlations,并通过将广义扩散范式转换为图形上的量子粒子的传播来替代。我们把这种新的卷积核称为量子扩散卷积 (QDC) 操作。此外,我们还介绍了一种多尺度版本,它结合了 QDC 操作和传统的图拉普拉斯算子的消息。通过研究 homophily 的光谱依赖性和量子动力学在构建滤波器中的重要性,我们意识到 QDC 操作可以提高与类似方法相比广泛使用的基准数据集的预测性能。


如何使用ChatPaper?

作为科研人员,每天需要检索和浏览大量的学术文献,以获取最新的科技进展和研究成果。然而,传统的检索和阅读方式已经无法满足科研人的需求。

ChatPaper是一款集检索、阅读、知识问答于一体的对话式私有知识库,AMiner希望通过技术的力量,让大家更加高效地获取知识。

👉ChatPaper使用教程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值