神组合:GNN+Transformer!新成果霸榜CVPR

AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!

2025深度学习发论文&模型涨点之——GNN+Transformer

GNN(图神经网络)和Transformer的结合是近年来图表示学习领域的一个新兴且充满潜力的研究方向。

                • 模型创新:不断有新的模型架构被提出,如Exphormer框架,采用虚拟全局节点和扩展图等机制,构建强大且可扩展的图变换器。

                • 性能提升:在多个数据集上的实验结果表明,GNN+Transformer的模型在性能上相较于单一模型有显著提升。例如,TransGNN在推荐准确性方面取得了显著的提升;FS-GNNCvTR模型在少样本毒性和副作用预测任务中,展现出更优越的性能。

                • 效率优化:为了提高模型的效率,研究者们提出了一些优化策略。例如,TransGNN引入了采样策略以及两种更新相关样本的高效方法,以减少复杂性。

                小编整理了一些GNN+Transformer论文】合集,以下放出部分,全部论文PDF版皆可领取。

                需要的同学

                回复“111”即可全部领取

                论文精选

                03-08
                ### 图神经网络 (GNN) 简介 图神经网络(Graph Neural Networks, GNN)是一种处理结构化数据的强大工具,能够捕捉节点之间的复杂关系并应用于多种领域。这类算法通过聚合邻居信息来更节点特征向量,在多轮迭代过程中逐步传播信息直至收敛。 #### 基本原理 在每一层中,每个节点会收集其相邻节点的状态,并基于这些状态计算自己的状态。这一过程可以通过消息传递机制实现: \[ h_v^{(l+1)}=\sigma\left(W_l \cdot AGG\left(\left\{h_u^{(l)}, u \in N(v)\right\}\right)+b_l\right)[^1] \] 其中 \(AGG\) 表示聚集函数;\(N(v)\) 是节点v的邻接集合;而权重矩阵 \(W_l\) 和偏置项 \(b_l\) 则用于参数调整。激活函数 σ 可以是非线性的ReLU或其他形式。 #### 应用场景 GNN广泛适用于社交网络分析、推荐系统构建以及生物化学分子建模等多个方面。特别是在涉及非欧几里得几何特性的场合下表现尤为出色,比如交通流量预测或是蛋白质相互作用网的研究等[^2]。 对于特定类型的图表征学习任务而言,采用双曲空间中的嵌入方法可能带来更优的结果。这是因为某些现实世界的数据集天然具备树状或分层特性,而在这样的环境中,相比于传统的平坦欧式度量体系,弯曲的空间往往能提供更加紧凑有效的表达方式[^3]。 ```python import torch from torch_geometric.nn import GCNConv class SimpleGCN(torch.nn.Module): def __init__(self): super(SimpleGCN, self).__init__() self.conv1 = GCNConv(dataset.num_features, 16) self.conv2 = GCNConv(16, dataset.num_classes) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = F.relu(x) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) ``` 此段Python代码展示了如何利用PyTorch Geometric库快速搭建一个简单的图卷积网络模型来进行分类任务。
                评论
                添加红包

                请填写红包祝福语或标题

                红包个数最小为10个

                红包金额最低5元

                当前余额3.43前往充值 >
                需支付:10.00
                成就一亿技术人!
                领取后你会自动成为博主和红包主的粉丝 规则
                hope_wisdom
                发出的红包
                实付
                使用余额支付
                点击重新获取
                扫码支付
                钱包余额 0

                抵扣说明:

                1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                余额充值