AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!
2025深度学习发论文&模型涨点之——GNN+Transformer
GNN(图神经网络)和Transformer的结合是近年来图表示学习领域的一个新兴且充满潜力的研究方向。
-
模型创新:不断有新的模型架构被提出,如Exphormer框架,采用虚拟全局节点和扩展图等机制,构建强大且可扩展的图变换器。
-
性能提升:在多个数据集上的实验结果表明,GNN+Transformer的模型在性能上相较于单一模型有显著提升。例如,TransGNN在推荐准确性方面取得了显著的提升;FS-GNNCvTR模型在少样本毒性和副作用预测任务中,展现出更优越的性能。
-
效率优化:为了提高模型的效率,研究者们提出了一些优化策略。例如,TransGNN引入了采样策略以及两种更新相关样本的高效方法,以减少复杂性。
小编整理了一些GNN+Transformer【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“111”即可全部领取
论文精选