GNN-Transformer融合模型的核心在于利用Transformer的自注意力机制增强GNN的全局信息聚合能力,同时通过GNN的图结构归纳偏置提升Transformer在处理非欧几里得数据时的效率。例如,Graph Transformer通过将节点特征和边特征嵌入到Transformer的输入序列中,实现了对图结构数据的端到端学习;而Graph-BERT则通过引入图感知的位置编码和节点上下文采样策略,进一步优化了Transformer在图数据上的表现。此外,这类模型在分子性质预测、社交网络分析、推荐系统等任务中均取得了显著的效果提升。
论文精选
论文1:
[NIPS] Geometric Transformer with Interatomic Positional Encoding
具有原子间位置编码的几何Transformer
方法
原子间位置编码(IPE):基于原子簇扩展(ACE)理论,设计了一种新的位置编码方法,用于参数化Transformer中的原子环境。
Geoformer架构:提出了一种新型的几何Transformer模型,通过引入IPE,能够有效建模分子结构并预测分子性质。
多体扩展与原子簇合并:通过原子簇的合并,捕捉分子内部的多体相互作用,提供更丰富的几何信息。
自注意力机制的扩展:通过将IPE与自注意力机制结合,增强了Transformer对分子几何结构的建模能力。
创新点
性能提升:在QM9数据集上,Geoformer在12种分子性质预测中超越了所有现有的Transformer和等变图神经网络(EGNNs),其中在8种性质上达到了最佳性能。例如,对于HOMO-LUMO带隙预测,Geoformer的平均绝对误差(MAE)为15.4 meV,相比之前最佳的Transformer模型Transformer-M(MAE为16.2 meV)降低了4.9%。
大规模数据集表现:在Molecule3D数据集上,Geoformer在随机分割和骨架分割的测试集上分别实现了最低的MAE,分别为0.0202 eV和0.1135 eV,相比之前最佳的ComENet模型(MAE为0.0326 eV和0.1273 eV),分别降低了
38.0%和10.9%。
几何信息建模:通过引入IPE,Geoformer能够捕捉分子结构中的多体几何信息,而不仅仅是成对距离,从而为Transformer架构提供了一种更全面的几何建模方法。
计算效率与可扩展性:尽管理论推导复杂,Geoformer在实际实现中采用了简化的设置,降低了计算复杂度,同时保持了高性能,使其在大规模分子数据集上具有良好的可扩展性。
论文2:
[ICLR] Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
基于自监督多尺度邻域预测的节点特征提取
方法
GIANT框架:提出了一种新的自监督学习框架GIANT,利用图信息辅助从原始数据中提取节点特征。
邻域预测任务:将邻域预测作为极端多标签分类(XMC)问题,通过XR-Transformer解决,从而利用图拓扑信息对语言模型进行微调。
多尺度学习:通过构建层次化的标签聚类树,实现从粗到细的多尺度邻域预测,提高模型的泛化能力。
图信息融合:通过正实例特征聚合(PIFA)和层次聚类,将图结构信息融入到节点特征提取过程中。
创新点
性能提升:在Open Graph Benchmark(OGB)数据集上,GIANT显著提升了多种图神经网络(GNNs)的性能。例如,在ogbn-papers100M数据集上,GIANT将排名第一的GAMLP模型的准确率从68.25%提升到69.67%,绝对提升了1.42%;对于标准的多层感知机(MLP),准确率从47.24%提升到61.10%,绝对提升了13.86%。
图拓扑与节点属性的结合:GIANT通过邻域预测任务将图拓扑信息与节点的原始文本特征相结合,解决了传统GNN管道中图无关特征提取的问题,从而提高了模型对图结构的利用效率。
多尺度邻域预测:通过层次化的多尺度邻域预测,GIANT能够更好地捕捉节点的局部和全局结构信息,相比传统的单尺度方法具有更强的表达能力。
可扩展性与灵活性:GIANT结合了XR-Transformer的强大能力,能够高效处理大规模图数据,并且可以轻松扩展到其他类型的原始数据(如图像、音频等),为图学习任务提供了更广泛的适用性。
论文3:
A Neural Architecture Predictor based on GNN-Enhanced Transformer
基于GNN增强Transformer的神经架构预测器
方法
GNN-Transformer融合框架:提出了一种结合图神经网络(GNN)和Transformer的神经架构预测器(GNET),通过特征融合模块将两者的优势结合起来,提升神经架构的表示能力。
特征融合方法:设计了两种特征融合方法——基于交叉注意力(Cross-Attention)的方法和基于结构感知(Structure-Aware)的方法,分别用于融合GNN生成的额外结构信息和Transformer的节点特征信息。
特征选择方法:提出了基于节点特征和连接特征的两种特征选择方法,通过实验验证了连接特征融合方法的优越性。
损失函数设计:针对不同数据集的特点,分别采用了均方误差(MSE)损失和排名损失(rank loss)来优化模型。
创新点
GNN增强Transformer:通过GNN生成额外的结构信息来增强Transformer的表示能力,有效解决了Transformer在处理图结构数据时对子图结构信息利用不足的问题。在NAS-Bench-101和NAS-Bench-201上的实验结果表明,该方法显著优于传统的基于位置编码的方法,例如在NAS-Bench-101上,使用0.02%数据时,Kendall’s tau提升了约0.24(从0.391提升到0.628)。
特征融合方法:提出的交叉注意力和结构感知两种特征融合方法,均能有效提升模型性能。在NAS-Bench-101上,交叉注意力方法在0.02%数据时Kendall’s tau达到0.628,比基线方法提升了约24%。
适应性与泛化能力:该方法在多个NAS基准测试中均表现出色,尤其是在DARTS搜索空间中,发现的架构在CIFAR-10数据集上达到了97.61%的准确率,超过了当前最先进的方法(如PINAT的97.58%)。
计算效率与性能平衡:通过实验验证了不同GNN层数对性能的影响,发现3层GNN在性能和计算效率之间取得了较好的平衡。在NAS-Bench-101上,使用3层GNN时,模型性能在不同数据量下均优于或接近最优性能。
论文4:
Collaborative Sequential Recommendations via Multi-view GNN-transformers
基于多视图GNN-Transformer的协同序贯推荐
方法
多视图图神经网络:提出了一种多视图图神经网络框架,通过构建每个项目的局部依赖图,将用户行为序列中的上下文信息和不同用户行为序列之间的协同信息结合起来。
层次图聚合机制:设计了一种层次图聚合模型,用于高效地提取每个节点邻域的1到K跳子图的表示,并将其传递给Transformer模块。
Dirichlet权重采样:提出了一种基于Dirichlet分布的权重采样方法,用于随机采样转换概率,避免模型对特定高权重邻居的过拟合,同时保持采样的无偏性。
多视图Transformer架构:将多视图图表示与Transformer架构结合,通过多视图聚合生成用户行为序列的统一表示,用于预测用户下一个可能的交互项目。
创新点
多视图协同信息建模:通过多视图图神经网络,不仅利用用户行为序列的上下文信息,还引入了不同用户行为序列之间的协同信息,显著提升了推荐性能。在Yelp数据集上,与现有的SOTA方法(如SURGE)相比,HR@20指标提升了6.7%(从0.0692提升到0.0738)。
层次图聚合与Transformer结合:提出的层次图聚合机制与Transformer架构的结合,能够更高效地处理大规模图数据,同时保留高阶依赖信息。在ML-1M数据集上,NDCG@10指标比基线方法提升了约12%(从0.1338提升到0.1483)。
Dirichlet权重采样:通过Dirichlet分布对转换概率进行随机采样,避免了模型对特定邻居的过拟合,同时保持了采样的无偏性。实验表明,该方法在不同数据集上均能显著提升模型的泛化能力。
计算效率优化:与现有的基于GCN的图神经网络相比,该方法在训练时间上显著减少。例如,在ML-1M数据集上,单次训练时间比FastGCN+Transformer快6.2倍,比GCN+Transformer快8.1倍。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。