前言
之前写过一篇LangChain-Chatchat搭建本地知识库的,现在再次讲解下 LangChain-Chatchat + deepseek + bge-m3 来实现本地私有化知识库。
传送门:
基于LangChain-Chatchat + Ollama + Qwen2-7b搭建本地私有中文知识库和 chatGPT(Ubuntu24 纯CPU)
保姆级教程 本地部署 deepseek + ollama + open-webui + cuda + cudnn
一、安装LangChain-Chatchat
LangChain,是一个用于开发大语言模型(LLM)驱动应用的开源框架,旨在简化 LLM 与外部数据、工具和复杂任务流程的集成。其核心目标是突破大模型的“静态知识限制”,使其能够动态调用外部资源(如文档、API、数据库)并实现多步骤推理,LangChain官网。
LangChain-Chatchat,是一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案,LangChain-Chatchat官网。
维度 | LangChain | LangChain-Chatchat |
---|---|---|
性质 | 开发框架(用于构建各类LLM应用) | 具体应用(基于LangChain实现的垂直场景解决方案) |
目标 | 提供模块化组件和接口,支持灵活组合 | 专注于本地知识库问答与对话场景 |
使用门槛 | 需编程能力(Python) | 提供开箱即用的Web界面和API |
用 Anconda 创建一个虚拟环境
conda create -n langchain-chatchat python=3.9
使用 la