【AI安全】Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections


近日,OpenAI、Anthropic、Google DeepMind 这三大竞争对手,居然联手发表了一篇论文,共同研究语言模型的安全防御评估。

Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections

  • 论文标题:The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections
  • 论文地址:https://arxiv.org/pdf/2510.09023

本文主要围绕一个问题展开:**我们该如何评估语言模型防御机制的鲁棒性?**要知道,目前针对越狱和提示注入的防御措施(前者旨在防止攻击者诱导模型输出有害内容,后者旨在防止攻击者远程触发恶意行为)主要采用如下手段

  1. 使用一组固定的、有害攻击样本进行静态测试;
  2. 要么依赖于一些计算能力较弱的优化方法,这些方法在设计时并未考虑到具体的防御机制。

换句话说,现有的防御评估大多是纸上谈兵,并没有真正模拟出一个懂防御、会反制的强攻击者。所以说,当前的评估流程是有缺陷的

这篇文章就是为了解决上述问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值