AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!
2025深度学习发论文&模型涨点之——PINN+GNN
物理信息神经网络是一种将微分方程描述的物理定律纳入其损失函数中的神经网络,以引导学习过程得出更符合基本物理定律的解。它可用于逼近偏微分方程和常微分方程的解,以及求解逆问题等。
-
材料科学:如在体心金属位错现象的计算中,利用PINN+GNN的思想,能够更准确地模拟和预测位错的移动等行为,有助于深入理解材料的变形机制。
-
生物医学:在DNA折纸结构预测中,PINN+GNN不仅提高了预测精度,还大幅缩短了预测时间,为生物医学领域的相关研究提供了更高效的工具。
-
交通网络:可用于交通流量预测等任务,通过结合物理规律和图结构数据,能够更准确地预测交通流量的变化,为交通管理和规划提供支持。
小编整理了一些PINN+GNN【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“PINN+GNN ”即可全部领取
论文精选
论文1:
Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs
结合物理信息图神经网络和有限差分法求解正向和逆向时空偏微分方程
方法
-
物理信息图神经网络(PIGNN):提出了一种新的离散方法PIGNN,将图神经网络(GNN)的优势、物理定律和有限差分法相结合,用于求解物理系统的近似解。
-
有限差分法:用于在图上计算微分算子,通过结合普通最小二乘技术来近似图上定义的微分算子,并提供了微分算子近似误差的理论讨论。
编码器-处理器-解码器架构:采用与Sanchez-Gonzalez等人相同的架构,其中编码器将非结构化网格转换为潜在图,处理器更新和传输信息,解码器输出PDE解。
-
物理信息损失函数:将物理约束纳入模型的损失函数中,通过调整模型可训练参数和未知PDE系数,使网络在拟合观测数据的同时遵循底层PDE定义的约束。
创新点
-
性能提升:在处理不规则网格、长时间步长、灵活的空间分辨率和多样化的初始及边界条件方面,PIGNN的性能优于现有的基于物理信息的神经网络(PINN)基线模型。例如,在热方程的实验中,PIGNN在训练和外推阶段与解析解表现出极好的一致性,而PINN在长时间步长时无法匹配解析结果,PIGNN的绝对误差远小于PINN。
-
泛化能力:PIGNN在不同计算域、空间分辨率和PDE参数条件下的泛化能力优于PINN。例如,当计算域扩大4倍时,PIGNN的预测结果与解析参考一致,而PINN输出完全错误的结果。
-
可扩展性:PIGNN能够直接应用于复杂的大规模场景,而无需在每个新场景中重新训练。例如,一个在小域上训练的模型可以直接应用于具有更大域的复杂设置,这对于实际应用中快速评估或响应的需求至关重要。
论文2:
Dynamics-based Feature Augmentation of Graph Neural Networks for Variant Emergence Prediction
基于动力学的图神经网络特征增强用于变体出现预测
方法
-
变体动力学信息提取:从区域对(国家)中提取变体流行率的动力学,这些动力学适用于一大类流行病模型,并据此在图神经网络(GNN)中引入特定特征。
-
图神经网络(GNN):利用基于变体动力学的特征增强的GNN来预测变体在给定区域的出现时间,与现有的物理信息神经网络(PINNs)框架相比,该方法在预测延迟方面表现出色。
-
基准测试工具:引入了一个基准测试工具,用于评估用户定义模型在87个国家和36种变体上的预测性能。
创新点
-
性能提升:所提出的基于动力学的GNN在预测变体出现时间方面优于所有基线模型,包括广泛使用的PINNs框架。例如,在预测变体到达特定国家的时间时,FA-GCN模型的中位数绝对误差(MedMAE)和中位数绝对误差(MedMedAE)均低于其他模型,显示出其在捕捉时间依赖性方面的有效性。
-
特征增强:通过引入变体增长率和流行率比的对数作为特征,简化了机器学习算法需要学习的底层模式,从而提高了模型的预测性能。
-
可解释性:与PINNs方法不同,该方法通过构建适当的特征而不是改变损失函数来整合疾病动力学,为预测提供了更直观和有效的途径。
论文3:
GPINN: Physics-informed Neural Network with Graph Embedding
具有图嵌入的物理信息神经网络
方法
-
物理信息神经网络(PINN)框架:提出了一种结合图嵌入的PINN框架(GPINN),在图(拓扑空间)中执行PINN,以提高问题求解效率。
-
图嵌入技术:通过引入额外维度来封装图的空间特征,同时保留原始空间的属性,这些额外维度的选择由Fiedler向量指导,提供了图的优化病理符号。
-
案例研究:通过两个案例研究——热传播问题和固体力学中的裂纹建模方法,展示了GPINN相较于传统PINN在性能上的显著提升,尤其是在捕捉解的物理特征方面的能力。
创新点
-
性能提升:在热传播和裂纹建模两个案例中,GPINN相较于传统PINN在性能上有显著提升。例如,在热传播问题中,GPINN能够产生令人满意的结果,尤其是在传统PINN表现不佳的相对不连续场问题中。
-
拓扑空间求解:将PINN的求解空间从传统的欧几里得空间转换为近似的拓扑空间,通过在输入空间中引入额外维度,使问题域与物理属性更加紧密对齐。
-
图嵌入的应用:利用图论中的Fiedler向量作为额外维度,为建模和求解过程提供了有价值的见解,尤其是在处理复杂域问题时。
论文4:
Higher-order Spatio-temporal Physics-incorporated Graph Neural Network for Multivariate Time Series Imputation
高阶时空物理融合图神经网络用于多变量时间序列插补
方法
-
高阶时空物理融合图神经网络(HSPGNN):提出了一种新的HSPGNN框架,通过空间注意力机制获得动态拉普拉斯矩阵,并使用物理动态系统的通用非齐次偏微分方程(PDE)来构建动态高阶时空GNN,以获取缺失的时间序列值。
-
归一化流(NF):用于估计缺失影响,评估图中每个节点的重要性,以提高模型的可解释性。
-
物理模型整合:将物理模型整合到数据驱动模型中,使模型能够自适应地优化不同物理定律的组合,提高模型的鲁棒性和可解释性。
创新点
-
性能提升:在四个基准数据集上的实验结果表明,HSPGNN在处理复杂缺失模式的数据时具有有效性和可解释性,尤其是在数据缺失率较高或缺失模式复杂的情况下。例如,在AQI和AQI-36数据集上,HSPGNN取得了最佳结果,充分展示了模型在复杂缺失数据情况下的优越性。
-
物理模型整合:通过将物理模型整合到数据驱动模型中,HSPGNN能够自适应地优化不同物理定律的组合,使模型更加鲁棒,并能够提供更好的解释。
-
计算复杂度降低:与传统的RNN方法相比,HSPGNN在计算高阶导数时的空间和时间复杂度显著降低。例如,计算(𝐴? − 1)阶导数的空间复杂度从O(3𝐴?(𝐴? − 1)/2) ≈ O(𝐴?²)降低到大约O(𝐴?𝐴?),时间复杂度从O(𝐴?³𝐴?)降低到大约O(𝐴?𝐴?²𝐴?)。
小编整理了PINN+GNN论文代码合集
需要的同学
回复“PINN+GNN ”即可全部领取