无缝集成-涨点涨爆了!PINN+GNN赢麻了!

AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!

2025深度学习发论文&模型涨点之——PINN+GNN 

物理信息神经网络是一种将微分方程描述的物理定律纳入其损失函数中的神经网络,以引导学习过程得出更符合基本物理定律的解。它可用于逼近偏微分方程和常微分方程的解,以及求解逆问题等。

  • 材料科学:如在体心金属位错现象的计算中,利用PINN+GNN的思想,能够更准确地模拟和预测位错的移动等行为,有助于深入理解材料的变形机制。

  • 生物医学:在DNA折纸结构预测中,PINN+GNN不仅提高了预测精度,还大幅缩短了预测时间,为生物医学领域的相关研究提供了更高效的工具。

  • 通网络:可用于交通流量预测等任务,通过结合物理规律和图结构数据,能够更准确地预测交通流量的变化,为交通管理和规划提供支持。

小编整理了一些PINN+GNN论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“PINN+GNN ”即可全部领取

论文精选

论文1:

Combining physics-informed graph neural network and finite difference for solving forward and inverse spatiotemporal PDEs

结合物理信息图神经网络和有限差分法求解正向和逆向时空偏微分方程

方法

  • 物理信息图神经网络(PIGNN):提出了一种新的离散方法PIGNN,将图神经网络(GNN)的优势、物理定律和有限差分法相结合,用于求解物理系统的近似解。

  • 有限差分法:用于在图上计算微分算子,通过结合普通最小二乘技术来近似图上定义的微分算子,并提供了微分算子近似误差的理论讨论。

    编码器-处理器-解码器架构:采用与Sanchez-Gonzalez等人相同的架构,其中编码器将非结构化网格转换为潜在图,处理器更新和传输信息,解码器输出PDE解。

  • 物理信息损失函数:将物理约束纳入模型的损失函数中,通过调整模型可训练参数和未知PDE系数,使网络在拟合观测数据的同时遵循底层PDE定义的约束。

    图片

创新点

  • 性能提升:在处理不规则网格、长时间步长、灵活的空间分辨率和多样化的初始及边界条件方面,PIGNN的性能优于现有的基于物理信息的神经网络(PINN)基线模型。例如,在热方程的实验中,PIGNN在训练和外推阶段与解析解表现出极好的一致性,而PINN在长时间步长时无法匹配解析结果,PIGNN的绝对误差远小于PINN。

  • 泛化能力:PIGNN在不同计算域、空间分辨率和PDE参数条件下的泛化能力优于PINN。例如,当计算域扩大4倍时,PIGNN的预测结果与解析参考一致,而PINN输出完全错误的结果。

  • 可扩展性:PIGNN能够直接应用于复杂的大规模场景,而无需在每个新场景中重新训练。例如,一个在小域上训练的模型可以直接应用于具有更大域的复杂设置,这对于实际应用中快速评估或响应的需求至关重要。

    图片

论文2:

Dynamics-based Feature Augmentation of Graph Neural Networks for Variant Emergence Prediction

基于动力学的图神经网络特征增强用于变体出现预测

方法

  • 变体动力学信息提取:从区域对(国家)中提取变体流行率的动力学,这些动力学适用于一大类流行病模型,并据此在图神经网络(GNN)中引入特定特征。

  • 图神经网络(GNN):利用基于变体动力学的特征增强的GNN来预测变体在给定区域的出现时间,与现有的物理信息神经网络(PINNs)框架相比,该方法在预测延迟方面表现出色。

  • 基准测试工具:引入了一个基准测试工具,用于评估用户定义模型在87个国家和36种变体上的预测性能。

    图片

创新点

  • 性能提升:所提出的基于动力学的GNN在预测变体出现时间方面优于所有基线模型,包括广泛使用的PINNs框架。例如,在预测变体到达特定国家的时间时,FA-GCN模型的中位数绝对误差(MedMAE)和中位数绝对误差(MedMedAE)均低于其他模型,显示出其在捕捉时间依赖性方面的有效性。

  • 特征增强:通过引入变体增长率和流行率比的对数作为特征,简化了机器学习算法需要学习的底层模式,从而提高了模型的预测性能。

  • 可解释性:与PINNs方法不同,该方法通过构建适当的特征而不是改变损失函数来整合疾病动力学,为预测提供了更直观和有效的途径。

    图片


论文3:

GPINN: Physics-informed Neural Network with Graph Embedding

具有图嵌入的物理信息神经网络

方法

  • 物理信息神经网络(PINN)框架:提出了一种结合图嵌入的PINN框架(GPINN),在图(拓扑空间)中执行PINN,以提高问题求解效率。

  • 图嵌入技术:通过引入额外维度来封装图的空间特征,同时保留原始空间的属性,这些额外维度的选择由Fiedler向量指导,提供了图的优化病理符号。

  • 案例研究:通过两个案例研究——热传播问题和固体力学中的裂纹建模方法,展示了GPINN相较于传统PINN在性能上的显著提升,尤其是在捕捉解的物理特征方面的能力。

    图片

创新点

  • 性能提升:在热传播和裂纹建模两个案例中,GPINN相较于传统PINN在性能上有显著提升。例如,在热传播问题中,GPINN能够产生令人满意的结果,尤其是在传统PINN表现不佳的相对不连续场问题中。

  • 拓扑空间求解:将PINN的求解空间从传统的欧几里得空间转换为近似的拓扑空间,通过在输入空间中引入额外维度,使问题域与物理属性更加紧密对齐。

  • 图嵌入的应用:利用图论中的Fiedler向量作为额外维度,为建模和求解过程提供了有价值的见解,尤其是在处理复杂域问题时。

    图片


论文4:

Higher-order Spatio-temporal Physics-incorporated Graph Neural Network for Multivariate Time Series Imputation

高阶时空物理融合图神经网络用于多变量时间序列插补

方法

  • 高阶时空物理融合图神经网络(HSPGNN):提出了一种新的HSPGNN框架,通过空间注意力机制获得动态拉普拉斯矩阵,并使用物理动态系统的通用非齐次偏微分方程(PDE)来构建动态高阶时空GNN,以获取缺失的时间序列值。

  • 归一化流(NF):用于估计缺失影响,评估图中每个节点的重要性,以提高模型的可解释性。

  • 物理模型整合:将物理模型整合到数据驱动模型中,使模型能够自适应地优化不同物理定律的组合,提高模型的鲁棒性和可解释性。

    图片

创新点

  • 性能提升:在四个基准数据集上的实验结果表明,HSPGNN在处理复杂缺失模式的数据时具有有效性和可解释性,尤其是在数据缺失率较高或缺失模式复杂的情况下。例如,在AQI和AQI-36数据集上,HSPGNN取得了最佳结果,充分展示了模型在复杂缺失数据情况下的优越性。

  • 物理模型整合:通过将物理模型整合到数据驱动模型中,HSPGNN能够自适应地优化不同物理定律的组合,使模型更加鲁棒,并能够提供更好的解释。

  • 计算复杂度降低:与传统的RNN方法相比,HSPGNN在计算高阶导数时的空间和时间复杂度显著降低。例如,计算(𝐴? − 1)阶导数的空间复杂度从O(3𝐴?(𝐴? − 1)/2) ≈ O(𝐴?²)降低到大约O(𝐴?𝐴?),时间复杂度从O(𝐴?³𝐴?)降低到大约O(𝐴?𝐴?²𝐴?)。

    图片

小编整理了PINN+GNN文代码合集

需要的同学

回复“PINN+GNN ”即可全部领取

<think>好的,用户想找结合PINN和LSTM的代码示例。首先,我需要回忆PINN(物理信息神经网络)和LSTM的基本概念。PINN通常结合物理方程到损失函数中,用于解决偏微分方程等问题,而LSTM擅长处理时间序列数据。结合两者可能是为了处理具有时间依赖性的物理系统,比如动态系统的预测。 接下来,我需要检查现有的引用资料。用户提供的引用中,引用[1]是关于PiNN库的,但可能不涉及LSTM。引用[2]提到物理信息LSTM用于延迟补偿,这可能接近用户的需求。引用[3]是LSTM的介绍,但没有结合PINN。 用户需要代码示例,但直接可用的资源可能不多,可能需要自己构建一个简单的示例。首先,考虑如何将物理方程整合到LSTM的训练中。例如,在时间序列预测中,除了数据损失,还要添加物理约束的损失项。 然后,我需要确保代码结构正确,使用PyTorch或TensorFlow。假设用户熟悉其中一个框架,这里选择PyTorch,因为它在科研中常用。LSTM的网络结构需要设计,输出可能用于预测下一个时间步,同时物理方程的残差需要计算并加入损失函数。 可能的挑战包括如何有效地结合时间序列数据和物理约束,以及平衡不同损失项的权重。此外,需要确保梯度正确计算,特别是在物理残差部分。例如,使用自动微分来计算物理方程的导数。 最后,检查是否满足用户的所有要求,包括格式要求:行内公式用$...$,独立公式用$$...$$,使用中文回答,生成相关问题等。确保引用正确,比如引用[2]提到物理信息LSTM,可能在代码示例后引用。</think>### 结合PINN与LSTM的代码实现思路 **物理信息神经网络(PINN)** 通过将物理方程嵌入神经网络损失函数实现物理约束,**LSTM** 则擅长处理时间序列数据的长期依赖关系。两者的结合常用于时空物理场预测(如流体动力学、热传导等问题)。以下是基于PyTorch的简化实现框架: ```python import torch import torch.nn as nn class PINN_LSTM(nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 1) # 预测物理量(如温度、速度) def forward(self, x): out, (h_n, c_n) = self.lstm(x) return self.fc(out) def physics_loss(y_pred, t, nu=0.1): # 计算物理方程残差(以一维Burgers方程为例) dy_dt = torch.autograd.grad(y_pred, t, grad_outputs=torch.ones_like(y_pred), create_graph=True)[0] dy_dx = torch.autograd.grad(y_pred, x, grad_outputs=torch.ones_like(y_pred), create_graph=True)[0] residual = dy_dt + y_pred*dy_dx - nu*torch.autograd.grad(dy_dx, x, grad_outputs=torch.ones_like(dy_dx), create_graph=True)[0] return torch.mean(residual**2) # 训练流程 model = PINN_LSTM(input_dim=3, hidden_dim=64) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) for epoch in range(1000): pred = model(X_train) # X_train包含时空坐标(t,x)和输入特征 data_loss = nn.MSELoss()(pred, y_train) phy_loss = physics_loss(pred, X_train[:, :, 0]) # 假设t是第一个特征 total_loss = data_loss + 0.1*phy_loss # 加权平衡损失项[^2] optimizer.zero_grad() total_loss.backward() optimizer.step() ``` #### 关键实现要: 1. **时空编码**:输入特征需包含时间$t$和空间坐标$x$,例如$X = [t, x, u_{prev}]$ 2. **物理残差计算**:通过自动微分(`torch.autograd.grad`)获取偏导数$ \frac{\partial u}{\partial t} $和$ \frac{\partial u}{\partial x} $ 3. **损失函数设计**:数据驱动损失(MSE)与物理约束损失(PDE残差)加权求和 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值