AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!
2025深度学习发论文&模型涨点之——强化注意
B-PINNs(贝叶斯物理信息神经网络)是一种结合了贝叶斯神经网络(BNN)和物理信息神经网络(PINN)的深度学习模型,用于解决具有噪声数据的偏微分方程(PDE)问题。
-
贝叶斯框架:B-PINNs在贝叶斯框架内利用物理定律和分散的噪声测量数据进行预测,并量化由噪声数据引起的偶然不确定性。
-
后验估计方法:B-PINNs使用HMC或VI等后验估计方法来估计模型参数的分布。此外,还可以使用dropout方法进行不确定性量化。
-
模型改进:一些研究中将BNN替换为截断的KL展开,并结合HMC或深度归一化流(DNF)模型作为后验估计器。
小编整理了一些强化注意【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“111”即可全部领取
论文精选
论文1:
Bayesian Physics-informed Neural Networks for System Identification of Inverter-dominated Power Systems
贝叶斯物理信息神经网络在逆变器主导电力系统的系统辨识中的应用
方法
-
贝叶斯物理信息神经网络(BPINN):结合物理信息神经网络(PINN)和贝叶斯方法,用于估计电力系统的动态特性。
-
弱信息先验:采用弱信息先验分布来处理逆变器主导电力系统中系统参数的不确定性。
-
系统动态模型:基于单机无穷大母线(SMIB)系统和多母线系统的动态模型,利用BPINN进行系统参数估计。
创新点
-
性能提升:BPINN在估计逆变器主导电网的动态特性时,与广泛使用的系统辨识方法SINDy相比,误差降低了10到90倍。
-
不确定性量化:BPINN能够量化测量和建模中的不确定性,提供关于估计值的置信度。
-
训练加速:通过转移学习,BPINN的训练时间减少了高达80%,显著提高了训练效率。
论文2:
Boundary integrated neural networks (BINNs) for acoustic radiation and scattering
边界集成神经网络(BINNs)用于声辐射和散射
方法
-
边界积分方程(BIEs):将声学问题的时间谐波波动方程转换为边界积分方程,用于编码神经网络。
-
边界积分神经网络(BINNs):利用边界积分方程代替传统的物理信息神经网络(PINNs)中的控制方程。
-
半解析特性:利用边界积分方程的半解析特性,提高数值模拟的精度。
创新点
-
精度提升:BINNs在声学问题的数值模拟中,与PINNs相比,使用更少的配点和隐藏层/神经元即可达到相当的精度。
-
适用性增强:BINNs特别适用于无界域问题的数值模拟,输入数据仅需边界配点的坐标。
-
收敛速度:BINNs的损失函数收敛速度快,无需复杂的平衡技术。
论文3:
B-PINNs Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
B-PINNs:贝叶斯物理信息神经网络用于带噪声数据的正向和逆向偏微分方程问题
方法
-
贝叶斯物理信息神经网络(B-PINN):结合贝叶斯神经网络(BNN)和物理信息神经网络(PINN),用于解决带有噪声数据的偏微分方程问题。
-
后验估计:采用汉密尔顿蒙特卡洛(HMC)或变分推断(VI)方法估计后验分布。
-
不确定性量化:通过贝叶斯框架量化噪声数据引起的不确定性。
创新点
-
性能提升:在噪声数据场景下,B-PINN-HMC相比PINNs和B-PINN-VI,预测结果更准确,误差更小。
-
不确定性量化:B-PINN能够提供更准确的不确定性估计,尤其是在噪声较大的情况下。
-
适用性增强:B-PINN框架能够处理带有噪声的边界条件和源项,适用于实际应用中的稀疏和噪声测量数据。
论文4:
Error-Aware B-PINNs Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks
具有误差感知能力的贝叶斯物理信息神经网络:改进不确定性量化
方法
-
误差感知B-PINN(Error-Aware B-PINN):引入伪随机不确定性,量化B-PINN解与真实解之间的差异。
-
误差界限:利用PINN在线性动态系统上的误差界限结果,构建预测分布的方差。
-
贝叶斯框架:在贝叶斯框架下,通过优化先验分布,确保预测不确定性覆盖误差界限。
创新点
-
性能提升:在未训练区域,误差感知B-PINN能够提供更合理的不确定性估计,避免了现有方法在这些区域的不确定性估计不足。
-
误差感知:通过引入伪随机不确定性,能够更准确地反映模型与真实解之间的偏差。
-
适用性增强:该方法不仅适用于线性动态系统,还为非线性偏微分方程提供了一种可能的改进方向。
小编整理了强化注意论文代码合集
需要的同学
回复“111”即可全部领取