运动规划的 内部优化 (know the problem solver)
约束问题的最优解方法:动态规划
通过类似于有限元的方式,把问题抽象成在一个离散的空间里面,把重复计算进行简化。但是计算量还是较大。


在研究凸问题的最优解,使用牛顿法求解,求解过程很快。

二次规划也不是不合适

加入松弛变量
转化成求线性方程组的问题

KKT

Apollo分段求最优(动态规划(对问题有个大致的认识)+ 二次规划(在局部求一个最优)) (启发式搜索)

Apollo EM Planing
实际过程中无人车,抽象成一系列的 约束(constraint)
- 交通规则(灯、线、障碍物)
- 决策(人为决策做动态规划)
- 轨迹(轨迹优化,平滑稳定)

换道例子(找合适的时机,换道决策做一个优化)
在本车道生成一个策略、换到也生成一个策略(根据打灯等行为)

多维度考虑
三维空间优化问题
方法:离散化处理、 路径速度迭代算法(最大期望)

优化关键步骤
- 目的
- 约束
- 优化求解


路径规划
先做动态规划

再做二次规划

速度规划
保证平滑性

SL图 ST图

结合

逆行例子

算法提速


本文探讨了运动规划的内部优化,包括动态规划、二次规划及KKT条件的应用。通过引入松弛变量将问题转化为线性方程组求解,讨论了Apollo在无人车路径与速度规划中的分段求最优策略。此外,还介绍了多维度考虑下的三维空间优化问题及路径速度迭代算法。
4915

被折叠的 条评论
为什么被折叠?



