损失函数--KL散度与交叉熵

损失函数

在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果。这种函数称为损失函数(loss function)。

损失函数越,则模型的预测效果越。所以我们可以把训练模型问题转化为最小化损失函数的问题。

​ 损失函数有多种,此次介绍分类问题最常用的交叉熵(cross entropy)损失,并从信息论贝叶斯两种视角阐释交叉熵损失的内涵。

K-L散度与交叉熵

  • 随机变量Xk种不同的取值: X 1 , X 2 , X 3 , … … , X k X^1, X^2, X^3 ,…… ,X^k X1,X2,X3Xk。 记X的取值 X i X^i Xi 的概率为p(X= X i X^i Xi) ,简写为P( X i X^i Xi) .

  • 克劳德**·** 香农定义了信息的信息量:

    I ( X = X i ) = log ⁡ 1 p ( X i ) = − log ⁡ p ( X i ) I(X = X^i) = \log \frac{1}{p(X^i)} = - \log p(X^i) I(X=Xi)=logp(Xi)1=logp(Xi)

    注:其中对数可以以任意合理数为底,如 2、e。使用不同的底数所得到的信息量之间相差一个常系数。

    若以2为底,信息量的单位是bit ,I(X= X i X^i Xi )是X = X i X^i Xi 这条信息的自信息量(self-information) .

  • 自信息量I随着概率P( X i X^i Xi)的图像变化如下:

在这里插入图片描述

自信息量背后的含义:信息中事件发生的概率越小,则信息量越大。

举例:假如有人告诉你即将开奖的彩票中奖号码是777777777,这条信息的价值很高,类似事情发生概率极小。假如有人告诉你明天太阳会升起,这件事对你来说价值很低,但是他发生的概率却很高。所以我们会觉得彩票的开奖号信息量很大,太阳升起的信息量较小。

  • 我们令信息源X 取不同的值 x 1 , x 2 , x 3 . . . x k x^1, x^2 , x^3 ... x^k x1,x2,x3...xk 的概率分布分别为 p ( x 1 ) p ( x 2 ) p ( x 3 ) . . . p ( x k ) p(x^1) p(x^2) p(x^3) ... p(x^k) p(x1)p(x2)p(x3)...p(xk) .

  • 定义信息源 X的熵(entropy)为:

    H§ = ∑ i = 1 K P ( x i ) log ⁡ 1 P ( x i ) = − ∑ i = 1 K P ( x i ) log ⁡ P ( x i ) \sum_{i=1}^K P(x^i) \log \frac{1}{P(x^i)} = - \sum_{i=1}^K P(x^i)\log P(x^i) i=1KP(xi)logP(xi)1=i=1KP(xi)logP(xi)

  • 信息源由概率分布p描述,s所以熵是p的函数,熵的概念来自热力学。H§又称平均信息。

  • 根据公式我们可以看出,H§是将X所有取值的自信息量以概率为权重取平均。

  • 对于两个概率分布p和q, 定义p和q的K-L散度(kullback-leibler divergence)是:

    K L D ( p ∣ ∣ q ) = ∑ i = 1 k p ( x i ) log ⁡ p ( x i ) q ( x i ) = − ∑ i = 1 k p ( x i ) log ⁡ q ( x i ) − H ( p ) KLD(p||q) = \sum_{i=1}^k p(x^i) \log \frac{p(x^i)}{q(x^i)} = - \sum_{i=1}^k p(x^i) \log q(x^i) - H(p) KLD(pq)=i=1kp(xi)logq(xi)p(xi)=i=1kp(xi)logq(xi)H(p)

  • K-L散度是 log ⁡ p ( x i ) q ( x i ) \log \frac{p(x^i)}{q(x^i)} logq(xi)p(xi) 在分布p上的期望。(注:KLD(p||q) ≠ \neq = KLD(q||p))

  • 根据上述公式我们可以发现,当 p ( x i ) 和 q ( x i ) p(x^i)和q(x^i) p(xi)q(xi) 相等时, log ⁡ p ( x i ) q ( x i ) = 0 \log \frac{p(x^i)}{q(x^i)} =0 logq(xi)p(xi)=0 所以KLD散度等于0。所以说两个同分布的KLD散度为0,所以我们一般使用KLD描述两个概率分布之间的相似度。

  • 我们定义交叉熵:

    H ( p , q ) = − ∑ i = 1 k p ( x i ) log ⁡ q ( x i ) H(p,q) = - \sum_{i=1}^k p(x^i) \log q(x^i) H(p,q)=i=1kp(xi)logq(xi)

  • 所以根据上述两式,有:

    H ( p , q ) = K L D ( p ∣ ∣ q ) + H ( p ) H(p,q) = KLD(p||q) + H(p) H(p,q)=KLD(pq)+H(p)

  • 分布p和q的交叉熵等于它们的K-L散度加上p的熵。现在假设分布 p p p固定,则 H ( p , q ) H(p,q) H(p,q) K L D ( p ∣ ∣ q ) KLD(p||q) KLD(pq)之间只相差一个常数 H ( p ) H(p) H(p),所以此时 H ( p , q ) H(p,q) H(p,q)也可以被用来描述两个分部之间的相似程度。即: H ( p , q ) H(p,q) H(p,q)越小,p,q越相似。

  1. 对于一个训练样本{ x i , y i {x^i, y^i} xi,yi } 可以标签 y i y^i yi 给出了一个类别的概率分布:

  2. P ( x i ∈ p ) = y i , P ( x i ∈ n ) = 1 − y i , i = 1 , … … , M P(x^i \in p) = y^i , P(x^i \in n) = 1-y^i , i= 1,……,M P(xip)=yiP(xin)=1yi,i=1,M

  3. 我们将逻辑回归模型的输出看做一个分布Q:

  4. Q ( x i ∈ p ) = 1 1 + e − b − W T x i , Q ( x i ∈ n ) = 1 1 + e b + w T x i , i = 1 , … … , M Q(x^i \in p) = \frac{1}{1+e^{-b-W^Tx^i}} , Q(x^i \in n) = \frac{1}{1+e^{b+w^Tx^i}} , i=1,……,M Q(xip)=1+ebWTxi1,Q(xin)=1+eb+wTxi1,i=1,M

  5. 所以我们希望回归模型的准确率尽可能地高,即是希望分布Q与训练集P的分布尽可能地相似,由此我们可以使用交叉熵来描述输出分布于标签分布的相似度,也就是我们所说的损失函数(loss)

l o s s ( w , b ∣ x i , y i ) = − y i log ⁡ 1 1 + e − b − W T x i − ( 1 − y i ) log ⁡ 1 1 + e b + w T x i i = 1 , . . . , M loss(w,b|x^i,y^i) = -y^i\log \frac{1}{1+e^{-b-W^Tx^i}} - (1-y^i)\log\frac{1}{1+e^{b+w^Tx^i}} i= 1,...,M loss(w,bxi,yi)=yilog1+ebWTxi1(1yi)log1+eb+wTxi1i=1,...,M

上式是模型在一个样本的交叉熵,其值越小,预测分布于标签给出分布越相似。

l o s s ( w , b ∣ x i , y i ) = 1 M ∑ i = 1 M ( − y i log ⁡ 1 1 + e − b − W T x i − ( 1 − y i ) log ⁡ 1 1 + e b + w T x i ) i = 1 , . . . , M loss(w,b|x^i,y^i) = \frac{1}{M} \sum_{i=1}^M( -y^i\log \frac{1}{1+e^{-b-W^Tx^i}} - (1-y^i)\log\frac{1}{1+e^{b+w^Tx^i}} )i= 1,...,M loss(w,bxi,yi)=M1i=1M(yilog1+ebWTxi1(1yi)log1+eb+wTxi1)i=1,...,M

上式是样本的平均交叉熵,作为模型的损失函数。

  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ambrosedream

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值