[信号与系统]有关带有冲激响应和阶跃响应的拉普拉斯变换求解法

前言

最近再看信号与系统这门课,学到冲激响应和阶跃响应这一块,看到mooc上的老师是直接用什么参数对应法,真的太抽象了,为了解决这个疑惑,我自己去搜了点资料,然后稍微写了一下有关拉普拉斯变换在冲激响应和阶跃响应中求解的方法。

例题

还是由一个题目来引入吧

y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) , 已知 y ( 0 − ) = 2 , y ′ ( 0 − ) = 0 , 求 y s i ( t ) 和 y s z ( t ) y''(t)+3y'(t)+2y(t)=2f'(t)+6f(t),已知y(0-) = 2,y'(0-)=0,求y_{si}(t)和y_{sz}(t) y′′(t)+3y(t)+2y(t)=2f(t)+6f(t),已知y(0)=2,y(0)=0,ysi(t)ysz(t)

part1:求解零输入响应 y z i ( t ) y_{zi}(t) yzi(t)

求解过程还是一如既往的轻松愉悦,首先我们可以获取特征方程

r 2 + 3 r + 2 = 0 r^2+3r+2=0 r2+3r+2=0 求得 特征根 r 1 = − 1 , r 2 = − 2 r_1=-1,r_2=-2 r1=1,r2=2

有特征根通解 y ( t ) = C 1 e − t + C 2 e − 2 t y(t)=C_1e^{-t}+C_2e^{-2t} y(t)=C1et+C2e2t,带入初始值,解得 C 1 = 2 , C 2 = 0 C_1=2,C_2=0 C1=2,C2=0

求得 y z i ( t ) = 2 e − t y_{zi}(t)=2e^{-t} yzi(t)=2et

part2:求解零状态相应 y z s ( t ) y_{zs}(t) yzs(t)

为了求解零状态响应,我们需要先知道几个知识点:

1. 拉普拉斯变换

普拉斯变换可以简化微分方程的求解过程,把微分方程转化为代数方程。公式如下:

F ( s ) = L { f ( t ) } = ∫ 0 ∞ f ( t ) e − s t F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t) e^{-st} F(s)=L{f(t)}=0f(t)est

其中s是一个复数变量,这里只当为一个常数即可

2. 有关拉普拉斯变换的几个性质

L { f ( t ) } = F ( s ) {L}\{f(t)\}=F(s) L{f(t)}=F(s)

L { f ′ ( t ) } = s F ( s ) − f ( 0 ) {L}\{f'(t)\} = sF(s) - f(0) L{f(t)}=sF(s)f(0)

L { f ′ ′ ( t ) } = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) {L}\{f''(t)\} = s^2 F(s) - sf(0) - f'(0) L{f′′(t)}=s2F(s)sf(0)f(0)

3. 有关单位阶跃函数的拉普拉斯变换:

单位阶跃函数表达式如下:

ɛ ( t ) = { 0 , t < 0 1 , t ≥ 0 ɛ(t) = \begin{cases} 0, & t < 0 \\ 1, & t \geq 0 \end{cases} ɛ(t)={0,1,t<0t0

我们有 L { ɛ ( t ) } = ∫ 0 ∞ ɛ ( t ) e − s t   d t = 1 s , Re ( s ) > 0 {L}\{ɛ(t)\} = \int_{0}^{\infty} ɛ(t) e^{-st} \, dt = \frac{1}{s}, \quad \text{Re}(s) > 0 L{ɛ(t)}=0ɛ(t)estdt=s1,Re(s)>0

由于 u ( t ) = 1 u(t) = 1 u(t)=1 ,所以积分变为: L { ɛ ( t ) } = ∫ 0 ∞ e − s t   d t \mathcal{L}\{ɛ(t)\} = \int_{0}^{\infty} e^{-st} \, dt L{ɛ(t)}=0estdt

计算该积分:

∫ 0 ∞ e − s t   d t = [ e − s t − s ] 0 ∞ = ( 0 − ( − 1 s ) ) = 1 s , Re ( s ) > 0 \int_{0}^{\infty} e^{-st} \, dt = \left[ \frac{e^{-st}}{-s} \right]_{0}^{\infty} = \left( 0 - \left( -\frac{1}{s} \right) \right) = \frac{1}{s}, \quad \text{Re}(s) > 0 0estdt=[sest]0=(0(s1))=s1,Re(s)>0

因此,单位阶跃函数 ɛ(t) 的拉普拉斯变换为:

L { ɛ ( t ) } = 1 s , Re ( s ) > 0 \mathcal{L}\{ɛ(t)\} = \frac{1}{s}, \quad \text{Re}(s) > 0 L{ɛ(t)}=s1,Re(s)>0

4. 拉普拉斯变换的基本线性性质
L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) {L}\{af(t) + bg(t)\} = aF(s) + bG(s) L{af(t)+bg(t)}=aF(s)+bG(s)

学习到了这些知识点,我们来进入正式的求解过程:

我们将 f ( t ) = ɛ ( t ) f(t)=ɛ(t) f(t)=ɛ(t) 带入,得到 y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 ɓ ( t ) + 6 ɛ ( t ) y''(t)+3y'(t)+2y(t)=2ɓ(t)+6ɛ(t) y′′(t)+3y(t)+2y(t)=(t)+(t)

两边进行拉普拉斯变换,记为: L { y ′ ′ ( t ) } + 3 L { y ′ ( t ) } + 2 L { y ( t ) } = 2 L { f ′ ( t ) } + 6 L { y ( t ) } {L}\{y''(t)\}+3{L}\{y'(t)\}+2{L}\{y(t)\}=2{L}\{f'(t)\}+6{L}\{y(t)\} L{y′′(t)}+3L{y(t)}+2L{y(t)}=2L{f(t)}+6L{y(t)}

由拉普拉斯变换的性质,并带入几个初值,我们可以计算得到如下方程:

( s 2 Y ( s ) − 2 s ) + 3 ( s Y ( s ) − 2 ) + 2 Y ( s ) = 2 ( s F ( s ) − 1 ) + 6 F ( s ) (s^2Y(s)-2s)+3(sY(s)-2)+2Y(s)=2(sF(s)-1)+6F(s) (s2Y(s)2s)+3(sY(s)2)+2Y(s)=2(sF(s)1)+6F(s)

拆开合并得到: s 2 Y ( s ) + 3 s Y ( s ) + 2 Y ( s ) − 2 s − 6 = 2 s F ( s ) + 4 F ( s ) − 2 s^2Y(s)+3sY(s)+2Y(s)-2s-6=2sF(s)+4F(s)-2 s2Y(s)+3sY(s)+2Y(s)2s6=2sF(s)+4F(s)2由于 f ( t ) = ɛ ( t ) f(t)=ɛ(t) f(t)=ɛ(t),可以计算得到 F ( s ) = 1 s F(s)=\frac{1}{s} F(s)=s1

带入,得到 s 2 Y ( s ) + 3 s Y ( s ) + 2 Y ( s ) − 2 s − 6 = 4 s + 2 s s^2Y(s)+3sY(s)+2Y(s)-2s-6=\frac{4}{s}+2s s2Y(s)+3sY(s)+2Y(s)2s6=s4+2s

这里具体计算过程不表了,反正最后代数分解,得到 Y ( s ) = 2 s − 2 s + 1 Y(s)=\frac{2}{s}-\frac{2}{s+1} Y(s)=s2s+12

我们带入 F ( s ) = L { f ( t ) } = ∫ 0 ∞ f ( t ) e − s t F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t) e^{-st} F(s)=L{f(t)}=0f(t)est,计算得到 y z s ( t ) = 2 − 2 e − t y_{zs}(t)=2-2e^{-t} yzs(t)=22et

  • 25
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值