大模型提示工程技术 | 六十二、Chain of thought prompting(思路链提示)

Chain of thought prompting(思路链提示)是一种用于指导人工智能模型进行推理和生成连贯文本的方法。在这种方法中,用户或模型首先提出一个初始问题或假设,然后根据这个初始问题或假设,逐步引导模型进行逻辑推理,最终得出一个结论或生成一段连贯的文本。

1. 工作原理:

  • 初始问题或假设:用户或模型首先提出一个初始问题或假设。这个问题或假设可以是关于某个主题的,也可以是关于某个问题的。
  • 逻辑推理:基于初始问题或假设,用户或模型逐步引导模型进行逻辑推理。在这个过程中,可以提出一系列相关的问题或假设,以帮助模型更好地理解问题或假设。
  • 结论或文本生成:通过逐步的逻辑推理,模型最终得出一个结论或生成一段连贯的文本。这个结论或文本应该与初始问题或假设相关,并且是逻辑上连贯的。

2. 优点:

  • 提高连贯性:通过逐步的逻辑推理,可以提高生成的文本或结论的连贯性。
  • 增强可解释性:用户或模型可以清楚地看到模型是如何进行推理的,从而增强模型的可解释性。
  • 适应性强:可以根据不同的场景和需求,灵活地调整逻辑推理的步骤和问题。

3. 应用场景:

  • 文本生成:在生成连贯的文本时,可以使用Chain of thought prompting来引导模型进行逻辑推理,从而生成更加连贯和有意义的文本。
  • 问题解答:在回答问题时,可以使用Chain of thought prompting来引导模型进行逻辑推理,从而给出更加准确和有说服力的答案。
  • 决策支持:在做出决策时,可以使用Chain of thought prompting来引导模型进行逻辑推理,从而提供更加可靠和合理的决策支持。

4. 挑战:

  • 逻辑推理的复杂性:在一些复杂的场景中,逻辑推理可能非常复杂,需要用户或模型具备较强的逻辑推理能力。
  • 模型的理解能力:模型可能无法完全理解用户或模型的逻辑推理过程,从而影响模型的性能。
  • 资源消耗:在某些情况下,Chain of thought prompting可能需要较多的计算资源,从而影响模型的效率。

Chain of thought prompting是一种非常有用的方法,可以帮助用户或模型更好地引导人工智能模型进行推理和生成连贯的文本。随着技术的发展,这种方法有望在更多领域得到应用。


最后

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!

在这里插入图片描述

一、大模型全套的学习路线

L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署

在这里插入图片描述

达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人在大模型时代,需要不断提升自己的技术和认知水平,同时还需要具备责任感和伦理意识,为人工智能的健康发展贡献力量。

有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

提示工程(Prompt Engineering)是人工智能领域中一种新兴的技术,它通过对输入提示的精心设计,来引导和优化模型的行为和输出。这种方法在语言模型和对话系统中尤为常见。在实践中,应用提示工程可以提高模型的泛化能力,让模型在面对未见过的数据时,依然能够给出合理的响应。以下是一些关键提示工程技术的介绍以及如何应用它们的例子: 参考资源接:[人工智能-提示工程-课件](https://wenku.csdn.net/doc/4yc1kuwipx?spm=1055.2569.3001.10343) - Zero-Shot Prompting:这是一种提示方法,允许模型直接回答它从未明确学习过的问题。例如,如果有一个模型经过训练可以回答有关动物的问题,我们可以直接提问“海豚是哺乳动物吗?”而无需提供示例答案。 - Few-Shot Prompting:在此方法中,模型通过少量的示例来理解任务。例如,给模型提供几个问题和答案的示例,然后询问一个新问题,模型会根据这些示例来回答新问题。 - Chain-of-Thought Prompting:这种方式通过提供一系列逐步的思考过程,帮助模型解决复杂问题。例如,在数学问题中,通过一步一步展示解题过程来引导模型理解问题并找到解决方案。 - Self-Consistency:通过生成多个响应,并选择其中最一致的答案来提高模型的可靠性。例如,在处理多义性问题时,模型会生成多个解释,并选择最合适的那个。 - Generate Knowledge Prompting:这种方法涉及利用外部知识库来增强模型的性能。例如,模型可以在回答问题时引用事实或数据,这些内容来自于一个预先构建的知识库。 - Tree of Thoughts (ToT):在ToT中,模型生成一个思考过程的树状结构,而不是一个简单的线性答案。这有助于展示模型如何逐步推理出答案。 - Retrieval Augmented Generation (RAG):结合检索和生成,模型在提供答案之前,会先检索相关的文档或信息。例如,模型在回答关于特定主题的问题之前,会查阅相关的背景资料。 为了深入理解和掌握这些技术,建议参阅《人工智能-提示工程-课件》。这份课件详细介绍了上述各种提示工程技术,包括它们的实现方法、应用场景和潜在风险。通过学习这些内容,你能够更好地将提示工程应用于自己的人工智能项目中,从而提升模型的性能和泛化能力。 参考资源接:[人工智能-提示工程-课件](https://wenku.csdn.net/doc/4yc1kuwipx?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值