在本篇文章中,介绍一种优化ReAct冗余问题的方法,REWOO。
一、REWOO的概念
REWOO的全称是Reason without Observation,是相对ReAct中的Observation 来说的。它旨在通过以下方式改进 ReACT 风格的Agent架构:
第一,通过生成一次性使用的完整工具链来减少token消耗和执行时间,因为ReACT模式的Agent架构需要多次带有冗余前缀的 LLM 调用;
第二,简化微调过程。由于规划数据不依赖于工具的输出,因此可以在不实际调用工具的情况下对模型进行微调。
ReWOO 架构主要包括三个部分:
-
Planner:规划器,负责将任务分解并制定包含多个相互关联计划的蓝图,每个计划都分配给Worker执行。
-
Worker:执行器,根据规划器提供的蓝图,使用外部工具获取更多证据或者其他具体动作。
-
Solver:合并器,将所有计划和证据结合起来,形成对原始目标任务的最终解决方案。
下图是REWOO的原理:
-
Planner接收来自用户的输入,输出详细的计划Task List,Task List由多个Plan(Reason)和 Execution(Tool[arguments for tool])组成;
-
Worker接收Task List,循环执行完成task;
-
Woker将所有任务的执行结果同步给Solver,Solver将所有的计划和执行结果整合起来,形成最终的答案输出给用户。
详细对比一下ReAct和REWOO,如下图所示。
左侧是ReAct方法,当User输入Task后,把上下文Context和可能的样本Example输入到LLM中,LLM会调用一个目标工具Tool,从而产生想法Thought,行动Action,观察Observation。由于拆解后的下一次循环也需要调用LLM,又会调用新的工具Tool,产生新的Thought,Action,Observation。如果这个步骤变得很长,就会导致巨大的重复计算和开销。
右侧ReWOO的方法,计划器Planner把任务进行分解,分解的依据是它们内部哪些用同类Tool,就把它分成同一类。在最开始,依旧是User输入Task,模型把上下文Context和Examplar进行输入。这里与先前有所不同的是,输入到Planner中,进行分解,然后调用各自的工具Tool。在得到了所有的Tool的输出后,生成计划结果Plan和线索,放到Solver进行总结,然后生成回答。这个过程只调用了两次LLM。
二、REWOO的实现过程
下面,通过实际的源码,详细介绍REWOO模式的实现方法。
第一步 构建Planner
Planner的作用是根据用户输入,输出详细的Task List。
首先需要给Planner规定Prompt模板,包括可以使用的Tools,以及Task List的规范。在下面的例子中,我们告诉Planner,“对于目标任务,要制定可以逐步解决问题的计划。对于每个计划,要指出哪个外部工具以及工具输入来检索证据,并将证据存储到变量 #E 中,以供后续工具调用”。在工具层面,我们定义了两个工具,google search和LLM。
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0)
prompt = """For the following task, make plans that can solve the problem step by step. For each plan, indicate \
which external tool together with tool input to retrieve evidence. You can store the evidence into a \
variable #E that can be called by later tools. (Plan, #E1, Plan, #E2, Plan, ...)
Tools can be one of the following:
(1) Google[input]: Worker that searches results from Google. Useful when you need to find short
and succinct answers about a specific topic. The input should be a search query.
(2) LLM[input]: A pretrained LLM like yourself. Useful when you need to act with general
world knowledge and common sense. Prioritize it when you are confident in solving the problem
yourself. Input can be any instruction.
For example,
Task: Thomas, Toby, and Rebecca worked a total of 157 hours in one week. Thomas worked x
hours. Toby worked 10 hours less than twice what Thomas worked, and Rebecca worked 8 hours
less than Toby. How many hours did Rebecca work?
Plan: Given Thomas worked x hours, translate the problem into algebraic expressions and solve
with Wolfram Alpha. #E1 = WolframAlpha[Solve x + (2x − 10) + ((2x − 10) − 8) = 157]
Plan: Find out the number of hours Thomas worked. #E2 = LLM[What is x, given #E1]
Plan: Calculate the number of hours Rebecca worked. #E3 = Calculator[(2 ∗ #E2 − 10) − 8]
Begin!
Describe your plans with rich details. Each Plan should be followed by only one #E.
Task: {task}"""
task = "what is the hometown of the 2024 australian open winner"
result = model.invoke(prompt.format(task=task))
print(result.content)
下面是根据给定的问题,Planner输出的Task List。可以看到,Planner按照Prompt的要求给出了计划的每个步骤,以及需要调用的工具。
Plan: Use Google to search for the 2024 Australian Open winner.
#E1 = Google[2024 Australian Open winner]
Plan: Retrieve the name of the 2024 Australian Open winner from the search results.
#E2 = LLM[What is the name of the 2024 Australian Open winner, given #E1]
Plan: Use Google to search for the hometown of the 2024 Australian Open winner.
#E3 = Google[hometown of 2024 Australian Open winner, given #E2]
Plan: Retrieve the hometown of the 2024 Australian Open winner from the search results.
#E4 = LLM[What is the hometown of the 2024 Australian Open winner, given #E3]
因为使用了LangGraph,为了将Planner连接到图表,我们将创建一个 get_plan 节点,该节点接受 ReWOO 状态并返回steps和 plan_string 字段。
import re
from langchain_core.prompts import ChatPromptTemplate
# Regex to match expressions of the form E#... = ...[...]
regex_pattern = r"Plan:\s*(.+)\s*(#E\d+)\s*=\s*(\w+)\s*\[([^\]]+)\]"
prompt_template = ChatPromptTemplate.from_messages([("user", prompt)])
planner = prompt_template | model
def get_plan(state: ReWOO):
task = state["task"]
result = planner.invoke({"task": task})
# Find all matches in the sample text
matches = re.findall(regex_pattern, result.content)
return {"steps": matches, "plan_string": result.content}
第二步 构建Worker
Worker负责接收Task List并按顺序使用工具执行任务。
下面实例化搜索引擎,并定义工具执行节点。
from langchain_community.tools.tavily_search import TavilySearchResults
search = TavilySearchResults()
def _get_current_task(state: ReWOO):
if state["results"] is None:
return 1
if len(state["results"]) == len(state["steps"]):
return None
else:
return len(state["results"]) + 1
def tool_execution(state: ReWOO):
"""Worker node that executes the tools of a given plan."""
_step = _get_current_task(state)
_, step_name, tool, tool_input = state["steps"][_step - 1]
_results = state["results"] or {}
for k, v in _results.items():
tool_input = tool_input.replace(k, v)
if tool == "Google":
result = search.invoke(tool_input)
elif tool == "LLM":
result = model.invoke(tool_input)
else:
raise ValueError
_results[step_name] = str(result)
return {"results": _results}
第三步 构建Solver
Solver接收完整的计划,并根据来自Worker的工具调用结果,生成最终响应。
我们给Solver的Prompt很简单,“根据上面提供的证据,解决问题或任务,直接回答问题,不要多说”。
solve_prompt = """Solve the following task or problem. To solve the problem, we have made step-by-step Plan and \
retrieved corresponding Evidence to each Plan. Use them with caution since long evidence might \
contain irrelevant information.
{plan}
Now solve the question or task according to provided Evidence above. Respond with the answer
directly with no extra words.
Task: {task}
Response:"""
def solve(state: ReWOO):
plan = ""
for _plan, step_name, tool, tool_input in state["steps"]:
_results = state["results"] or {}
for k, v in _results.items():
tool_input = tool_input.replace(k, v)
step_name = step_name.replace(k, v)
plan += f"Plan: {_plan}\n{step_name} = {tool}[{tool_input}]"
prompt = solve_prompt.format(plan=plan, task=state["task"])
result = model.invoke(prompt)
return {"result": result.content}
第四步 构建Graph
下面,我们构建流程图,将Planner、Worker、Solver等节点添加进来,执行并输出结果。
def _route(state):
_step = _get_current_task(state)
if _step is None:
# We have executed all tasks
return "solve"
else:
# We are still executing tasks, loop back to the "tool" node
return "tool"
from langgraph.graph import END, StateGraph, START
graph = StateGraph(ReWOO)
graph.add_node("plan", get_plan)
graph.add_node("tool", tool_execution)
graph.add_node("solve", solve)
graph.add_edge("plan", "tool")
graph.add_edge("solve", END)
graph.add_conditional_edges("tool", _route)
graph.add_edge(START, "plan")
app = graph.compile()
for s in app.stream({"task": task}):
print(s)
print("---")
下图详细介绍了Planner、Worker和Solver的协作流程。
三、总结
相比ReAct,ReWOO 的创新点主要包括以下几个方面:
-
分离推理与观察:ReWOO 将推理过程与使用外部工具的过程分开,避免了在依赖观察的推理中反复提示的冗余问题,从而大幅减少了 Token 的消耗。
-
模块化设计:ReWOO 使用模块化框架,通过planer、worker和solver的分工合作,提高了系统的扩展性和效率。
-
效率提升:实验结果表明,REWOO不仅提升了准确率,还显著降低token消耗。
-
工具调用的鲁棒性:ReWOO 在工具失效的情况下表现出更高的鲁棒性,这意味着即使某些工具无法返回有效证据,ReWOO 仍能通过合理的计划生成和证据整合,提供有效的解决方案。
但是,REWOO的缺陷在于,非常依赖于Planner的规划能力,如果规划有误,则后续所有的执行都会出现错误。尤其是对于复杂任务,很难在初始阶段就制定合理且完备的计划清单。
因此,如果要提升Agent的准确率,需要有规划调整机制,即在执行的过程中,根据环境反馈,不断调整计划。
四、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】