CNN(卷积神经网络)和U-Net是深度学习中两种重要的网络架构,它们在图像处理和分割任务中具有广泛的应用。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
标题:
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net:用于生物医学图像分割的卷积网络
方法:
-
U-Net架构:提出了一种基于U型结构的卷积网络,包含收缩路径(编码器)和扩展路径(解码器),通过跳跃连接将高分辨率特征与上采样特征结合。
-
数据增强:通过弹性变形对有限的标注样本进行数据增强,模拟组织变形,提高网络对变形的鲁棒性。
创新点:
-
U-Net架构:通过U型结构实现高精度分割,仅需少量标注图像即可训练出优于传统滑动窗口卷积网络的模型(例如在ISBI挑战中,U-Net的warping error为0.000353,优于Ciresan等人的0.000420)。
-
数据增强策略:通过弹性变形显著提高了网络对组织变形的鲁棒性,减少了对大量标注数据的依赖,训练时间仅需10小时。
-
加权损失函数:通过加权损失函数改善了细胞分割中接触物体的分离效果,例如在ISBI细胞跟踪挑战中,U-Net的平均交并比(IOU)达到92.03%,显著优于第二名的83%。
-
无缝分割能力:通过重叠平铺策略实现了对任意大小图像的无缝分割,突破了GPU内存限制,适用于大型图像分割任务。
论文2
标题:
Weak-Mamba-UNet: Visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation
Weak-Mamba-UNet:视觉Mamba让CNN和ViT在基于涂鸦的医学图像分割中表现更好
方法:
-
多架构融合:提出了一个弱监督学习框架,结合CNN(UNet)、Transformer(SwinUNet)和Mamba架构(MambaUNet),分别用于局部特征提取、全局上下文理解和长距离依赖建模。
-
跨监督机制:通过伪标签实现多网络之间的协作和交叉监督学习,将稀疏的涂鸦注释转换为密集的伪标签用于训练。
创新点:
-
Mamba架构引入:首次将Mamba架构应用于基于涂鸦的医学图像分割任务,显著提升了分割性能(例如在MRI心脏分割任务中,Dice系数达到0.9171,优于仅使用UNet或SwinUNet的框架)。
-
多视图交叉监督:通过结合三种不同架构的网络,实现了多视图交叉监督学习,提升了模型对有限标注数据的适应性和鲁棒性。
-
性能提升:相比仅使用UNet或SwinUNet的弱监督框架,Weak-Mamba-UNet在多个评估指标上表现出色,例如平均Dice系数提升了约2%~3%,Hausdorff距离降低了约50%,平均表面距离降低了约50%。
-
稀疏注释的有效利用:通过伪标签生成和交叉监督机制,有效地将稀疏的涂鸦注释转化为密集信号,降低了标注成本,同时保持了高精度的分割效果。
论文3
标题:
CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation
CM-UNet:用于遥感图像语义分割的混合CNN-Mamba UNet
方法:
-
混合架构设计:提出了一种结合CNN编码器和Mamba解码器的混合架构,CNN用于提取局部图像特征,Mamba用于聚合和整合全局信息。
-
CSMamba模块:引入CSMamba模块作为核心分割解码器,通过通道和空间注意力机制增强特征交互和全局-局部信息融合。
创新点:
-
混合架构优势:通过结合CNN的局部特征提取能力和Mamba的全局信息整合能力,显著提升了遥感图像语义分割的性能。例如,在ISPRS Potsdam数据集上,CM-UNet的平均F1分数(mF1)达到93.05%,比UNetformer高出0.25%。
-
CSMamba模块:通过引入通道和空间注意力机制,增强了特征交互和全局-局部信息融合能力。在ISPRS Vaihingen数据集上,CM-UNet的平均交并比(mIoU)达到85.48%,比其他方法高出2.78%至16.08%。
-
多尺度特征融合:MSAA模块通过融合不同尺度的特征,进一步提升了分割精度。在LoveDA数据集上,CM-UNet的mIoU达到52.17%,优于其他方法。
-
计算效率与性能平衡:CM-UNet在计算复杂度和分割性能之间取得了良好的平衡。例如,其FLOPs和参数量均低于其他方法,但mIoU结果却优于其他模型,显示出更高的性价比。
论文4
标题:
DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Image Segmentation
DC-UNet:用双通道高效CNN重新思考医学图像分割的U-Net架构
方法:
-
双通道CNN块设计:提出了双通道CNN块(DC块),用以替代传统的残差连接,增强特征提取能力。
-
Res-Path连接:在编码器和解码器之间引入Res-Path连接,通过多个3×3卷积层和残差连接传递特征。
创新点:
-
双通道CNN块:通过双通道CNN块,显著提升了特征提取能力,减少了模型参数数量。例如,在红外乳腺图像数据集上,DC-UNet的分割准确率比U-Net提高了2.90%,比MultiResUNet提高了1.20%。
-
改进的Res-Path连接:通过Res-Path连接,增强了特征传递效率,提升了分割精度。在ISBI-2012电子显微镜数据集上,DC-UNet的平均Tanimoto相似性达到92.62%,比U-Net高出1.49%,比MultiResUNet高出0.66%。
-
多尺度特征融合:通过双通道CNN块的多尺度特征融合,提升了模型对复杂医学图像的分割能力。在CVC-ClinicDB内窥镜数据集上,DC-UNet的分割准确率比U-Net提高了11.42%,比MultiResUNet提高了2.02%。
-
Tanimoto相似性度量:采用Tanimoto相似性度量,避免了二值化处理,保留了更多分割图像的信息,同时在不同图像尺寸和目标比例下保持稳定。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】