(CVPR 2024) FourierDiff:零样本扩散模型,突破低光增强与去模糊瓶颈

FourierDiff 提出了一种基于 傅里叶先验引导的扩散模型,能够 零样本 地同时完成 低光照增强和去模糊,在 无需配对训练数据 的情况下,在真实世界场景下取得了 更自然的亮度和更清晰的细节

现有方法的局限性

  • 传统 低光照增强 方法改善亮度但无法处理模糊,导致增强后的图像仍然模糊。

  • 传统 去模糊 方法在低光照环境下表现不佳,假设图像拍摄于良好照明条件。

  • 现有联合方法(如 LEDNet)依赖于 配对的合成数据 训练,泛化能力不足,在真实场景下效果欠佳。

研究核心问题
如何在 未知真实世界退化条件 下,同时进行 低光照增强 和 去模糊无需配对数据,并取得 自然亮度和清晰细节 的高质量图像?

技术亮点

  1.  傅里叶先验指导扩散模型
    • 研究发现 亮度信息主要集中在振幅(amplitude),而 结构信息主要保留在相位(phase)

    • Four
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值