FourierDiff 提出了一种基于 傅里叶先验引导的扩散模型,能够 零样本 地同时完成 低光照增强和去模糊,在 无需配对训练数据 的情况下,在真实世界场景下取得了 更自然的亮度和更清晰的细节。
现有方法的局限性:
-
传统 低光照增强 方法改善亮度但无法处理模糊,导致增强后的图像仍然模糊。
-
传统 去模糊 方法在低光照环境下表现不佳,假设图像拍摄于良好照明条件。
-
现有联合方法(如 LEDNet)依赖于 配对的合成数据 训练,泛化能力不足,在真实场景下效果欠佳。
研究核心问题:
如何在 未知真实世界退化条件 下,同时进行 低光照增强 和 去模糊,无需配对数据,并取得 自然亮度和清晰细节 的高质量图像?
技术亮点
-
傅里叶先验指导扩散模型
• Four
• 研究发现 亮度信息主要集中在振幅(amplitude),而 结构信息主要保留在相位(phase)。