导数,微分,偏导,全微分,方向导数,梯度

这篇博客详细介绍了多元函数微积分的基础概念,包括导数、微分、偏导数、全微分、可微分与偏导数的关系、方向导数、梯度向量。文中强调了这些概念在不同维度上的应用和物理意义,特别是梯度向量指向函数值增加最快的方向,并讨论了方向导数与全微分的关系。此外,还探讨了一元函数与多元函数在微积分中的差异,以及它们在实际问题中的应用,例如寻找最省力路径等。
摘要由CSDN通过智能技术生成

多元函数与一元函数有一个很大的区别在于定义域的不同:一元函数自变量就在x轴上,因此趋近的方向只有某点的左右两侧,因此,考察一元函数极限的时候,仅考虑左邻域和右邻域即可。但是多变量微分变得复杂,趋向方式是无限种可能的。

比如:二元函数,定义域在一个平面内,趋近方式可以是直线,也可以是曲线。
在这里插入图片描述

1.导数

在这里插入图片描述

2.微分

在这里插入图片描述

3.微分与导数的关系

在这里插入图片描述
其实微分就是一个线性映射,导数就是这个线性映射在某个向量基(此处是标准正交基)下的矩阵,而偏导数(或者广义的方向导数)就是这个矩阵的元素!
简单点儿:

就说最简单的一元情况下,导数是一个确定的数值,几何意义是切线斜率,物理意义是瞬时速度。
而微分是一个函数表达式,用于自变量产生微小变化时计算因变量的近似值。

4.偏导

类比于一元函数,也想研究函数的变化率问题,在日常生活中,我们经常遇到这样的问题,一个值和许多元素相关,我们习惯只改变一个变量值,其它变量值固定,看变化的情况。

这个思想就是偏导数:

固定y,让x变化就是对x的偏导数:从图中来看相当于经过A点做平行于xoz的平面,与空间曲面相交得到曲线,做切线,此切线的斜率即此点关于x的偏导。(具体公式去看课本,这里理解思想)

在这里插入图片描述
固定x,让y变化就是对y的偏导数:
在这里插入图片描述
在这里插入图片描述

5.全微分

上面已经研究了分别控制自变量x,y,函数的改变量。那么两个自变量都变化呢,很幸运我们得到如下方式:
在这里插入图片描述
可以看到全微分是满足叠加性的,全微分等于由于各自变量改变引起函数值变化之和。

当然,全微分要比存在偏导要求更严格。全微分要求任意路径的切线都要存在且在一个切平面内(参见如何理解全微分),而偏导存在只能证明沿着x轴和y轴方向的切线存在。

在这里插入图片描述
在这里插入图片描述

6.可微分与偏导数关系

在这里插入图片描述

7. 方向导数

方向导数思想很简单,x和y均不固定,但是x和y的变化在一条直线上,此时考察函数的变化。值得注意的是,即使任意方向导数均存在,也不能保证全微存在。因为仅保证了以直线趋近到点A的导数存在。
在这里插入图片描述

公式:

为了帮助理解,仍用二元函数,定义域内取一个方向为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8.方向导数与全微分的关系

在这里插入图片描述

9. 梯度向量

梯度可谓是多元函数中一个基本的名词。它的物理意义我们都很清楚或者教材也都会介绍:方向指向数值增长最快的方向,大小为变化率。通过这个性质也说明梯度是有方向和大小的矢量。通过梯度的定义我们发现,梯度的求解其实就是求函数偏导的问题,而我们高中所学的导数在非严格意义上来说也就是一元的“偏导”。通过这一点我们自然而然地想到梯度应该是导数向更高维数的推广。然而一我一直想不明白的是:
梯度是矢量而某点的导数是个常量,两者应该有本质的区别,而导数的正负也反映了函数值的大小变化,而不是一直指向数值增大的方向。
在此我们通过一张图来说明解释一下两者的关系:
在这里插入图片描述
其实一元函数肯定也有梯度,我们经常不提及的原因其实很简单:一元函数的梯度方向自变量轴(x)!而导数值的正负号决定了这个方向是正方向还是反方向。如图所示,A点右"领域"的导数为正值,则梯度的方向跟x轴正方向一致,梯度方向指向数值增大的方向;相反在B点右"领域",导数为负值,则梯度的方向为x轴的负方向,梯度方向也是指向数值增大的方向。通过这个例子向多维函数推广,梯度从数值小指向数值大的物理意义也就容易理解了。而一元函数的大小自然也就是导数的绝对值。

问题来了,方向向量角度是可以从0-360度的,哪个方向是函数值变化最大的呢?

从数学上来看非常简单,上面已经推导出了内积的形式,那么内积最大的时候,即两者同向的时候,此时得到梯度向量为,
在这里插入图片描述
在这里插入图片描述

梯度向量是方向导数最大的地方,也就是曲面上最陡峭的方向,在日常生活中梯度向量用的非常多,因为我们经常会遇到找寻下降最快的路径(梯度向量的反方向)等问题,比如下山最省力气的路径。

https://blog.csdn.net/czmacd/article/details/81178650
https://zhuanlan.zhihu.com/p/39059717

1. 使用Python 绘制二元函数的图像: 首先需要安装matplotlib库,然后使用以下代码进行绘图: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) # 定义二元函数 Z = X**2 + Y**2 # 绘制图像 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, Z) plt.show() ``` 2. 求多元函数的偏导数偏导数表示函数在某个变量上的变化率,而其他变量保持不变。对于多元函数,可以对每个变量分别求偏导数。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它在 $x$ 和 $y$ 上的偏导数: $\frac{\partial f}{\partial x} = 2x$ $\frac{\partial f}{\partial y} = 2y$ 3. 求多元函数的高阶偏导数: 高阶偏导数表示函数在某个变量上的变化率的变化率,可以通过对偏导数再次求导得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它的二阶偏导数: $\frac{\partial^2 f}{\partial x^2} = 2$ $\frac{\partial^2 f}{\partial y^2} = 2$ $\frac{\partial^2 f}{\partial x\partial y} = 0$ 4. 求多元函数的全微分全微分表示函数在某个点上的变化量,可以通过对每个变量的偏导数求和得到。 例如,对于函数 $f(x,y)=x^2+y^2$,可以求出它在点 $(1,2)$ 处的全微分: $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ $= 2x dx + 2y dy$ $= 2(1) dx + 2(2) dy$ $= 2dx + 4dy$ 5. 求隐函数的偏导数: 隐函数是一个多元函数,其中一个变量可以表示为其他变量的函数,例如 $x^2+y^2=1$ 可以表示为 $y=\sqrt{1-x^2}$。 对于这样的隐函数,可以使用隐函数求导法求出它的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$ 其中 $f(x,y)=x^2+y^2-1$,代入得: $\frac{\partial y}{\partial x} = -\frac{2x}{2y} = -\frac{x}{y}$ 6. 求隐函数组的偏导数: 类似地,对于多个隐函数组成的隐函数组,可以使用偏导数的链式法则求出它们的偏导数。 例如,对于隐函数组 $\begin{cases}f(x,y,z) = x^2+y^2+z^2-1=0 \\ g(x,y,z) = x+y+z-2=0\end{cases}$,可以求出它们在点 $(1,1,0)$ 处的偏导数: $\frac{\partial y}{\partial x} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = -\frac{2x}{2y} = -\frac{x}{y}$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial y}} = -\frac{2z}{2y} = -\frac{z}{y}$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial f}{\partial z}}{\frac{\partial f}{\partial x}} = -\frac{2z}{2x} = -\frac{z}{x}$ $\frac{\partial y}{\partial x} = -\frac{\frac{\partial g}{\partial x}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial y}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial y}} = -1$ $\frac{\partial x}{\partial z} = -\frac{\frac{\partial g}{\partial z}}{\frac{\partial g}{\partial x}} = -1$ 7. 求方向导数梯度方向导数表示函数在某个方向上的变化率,可以通过对梯度向量与该方向向量进行点积得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处沿着向量 $(1,1)$ 的方向导数为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $D_{\vec{v}}f = \nabla f \cdot \vec{v} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 6$ 梯度表示函数在某个点上的最大变化率,可以通过对每个变量的偏导数构成的向量得到。 例如,对于函数 $f(x,y)=x^2+y^2$,在点 $(1,2)$ 处的梯度为: $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ 8. 求多元函数的极值: 极值表示函数在某个点上取得最大或最小值,可以通过求解偏导数为0的方程组来得到。 例如,对于函数 $f(x,y)=x^2+y^2+2x+4y+1$,可以求出它的偏导数: $\frac{\partial f}{\partial x} = 2x+2$ $\frac{\partial f}{\partial y} = 2y+4$ 令偏导数为0,得到临界点 $(x,y)=(-1,-2)$。 然后可以通过求解二阶偏导数的行列式来确定这个点的极值类型: $D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x\partial y} \\ \frac{\partial^2 f}{\partial y\partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$ 因为 $D>0$ 且 $\frac{\partial^2 f}{\partial x^2}>0$,所以这个点是函数的最小值点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值