probability space 概率空间,Filtration,σ-algebras

1. probability space 概率空间

1.1 概率基础

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 概率空间

在这里插入图片描述
在这里插入图片描述

2. Filtration

filtration在钱敏平老师和龚光鲁老师的《随机过程论》中直接称其为非降的KaTeX parse error: Undefined control sequence: \sigmma at position 1: \̲s̲i̲g̲m̲m̲a̲代数族。如图。
在这里插入图片描述
一般叫 σ \sigma σ-代数流或 σ \sigma σ-域流

在鞅论中的花体 F t F_t Ft,即filtration中文翻译成“滤波”或“滤子”,它在本质上是一个非降子 σ \sigma σ-代数。这个名词的最早来源不是很清楚(有人说是从描述股票的价格变化过程中来的)。有时也把鞅论中(Ω,F,P,∪F_t)称为“被滤过的概率空间”。

这个概念是很抽象很拓扑的。看到这个filtration第一感觉就是滤子,因为它附带着一个序关系。
在这里插入图片描述

这是我搜集到的资料。看到这个概念的时候我就发现,啊,和我的生活好像啊。

下面解释一下我作为一个初学者的理解。

概率空间里的F是一个可测集类。一个集合就是一个事件,那么可测集类就表示『我们用现有的方法能够形成一个看待的事件』之总和。

比如我现在觉得国际政治很扯,当学霸性价比挺低。对我来说这两个例子是几乎不可能翻盘的,这样在阐述问题时比较方便。那么就相当于:
学霸→性价比低。
国际政治→很扯淡。
对这两件事我就能形成一个看待。但现在我对有些事情还没法形成一个看待,譬如:《随机过程》对我来说难吗?可能是难,可能是不难。
对于给定时刻,每一座城市都有权力寻租吗?可能是肯定,也可能是否定。
如果政治家有极强的同理心,对我们来说是好事吗?可能是,可能不是。那么就相当于:

  • 《随机过程》→难,易
  • 没有权力寻租的城市→存在,
  • 不存在强同理心政治家→好,坏传统意义上

对以上三件我们无法确定的事,我们视为随机变量并按照主观or经验or等分性来赋予其取两个值的概率。这种赋予是不准确的,只有当我们必须要做出相关决策的时候,才不得不赋予一个。

但我们知道,有不可测集合。不是所有集合都能被定义一个合适的概率。(实变函数中的Vitali定理:实数上测度不为0的集合各自有个不可测子集)

所以我们就反过来想:既然以上三件事我们无法确定,那就干脆踹到可测集类F的外面去。我们不管它们,暂时也不做关于它们的决策。毕竟决策通常不是非做不可,搁置也是一种选择。

世界是好还是坏,是正义还是邪恶?我拒绝给出一个理性的回答,因为这件事我们无法确定。
世界上有百分之多少的事情呢?有的事情,比如开车,可以被视为一件事情,也可以被视为『走到车门口、开车门、开油门、关闭车门、发动』这五件事情,从微观来说又能被视为恒河沙数件事情(对应各个微观粒子的移动)。

相比之下,即便世界上只有一个人,有足够多的信息和资源,这个人有无限的自由和想象力,可是这个人还是无法真正做到『世界上的每一件事情』。人即便不被当局或外界限制权力,能做到的还是有限。世界那么大,人只需要活在其中100个单位的地方,知道其中1000个单位的事情就够了。

所以我们宣称,随着这个人行为自由度的日益增长,对他来说,可以知道的事情不断变多,他眼中的可测集类不断变大。

小时候我对国际政治报以美好的期望,长大后尽管我还对很多事情报以积极的想象力,但某几件事情就除外了。譬如国际政治。

随着『能形成看待的事物的范围』不断增大,这样就组成了一个filtration。

这是一个哲学上非常符合实际的理解。至于什么是Xn适应了Fn呢?那就是在同一时刻下,我要做出的决策不会超出我能看待的事物的范围(言外之意就是,如果超出了,我就不做那些超出范围的决策)。这和《实变函数》课程中『E∈M』这种限制一样,是一种预防性的废话。

3. σ \sigma σ-algebras

σ \sigma σ-algebras其实是个集合系,它保证在这里头的集合,不管如何做交差并补,随便做可列次,结果都还在这个系里面.这对运算的良定义是很关键的.

在这里插入图片描述
在这里插入图片描述

https://www.zhihu.com/question/36392820
https://zhuanlan.zhihu.com/p/38119668

### σ-Algebra 的概念及其在数学和计算机科学中的应用 #### 什么是 σ-Algebra? σ-Algebra 是一种集合代数结构,在测度论、概率论以及更广泛的数学领域中具有重要意义。它是一种定义在某个全集 \( \Omega \) 上的子集族,满足以下三个条件: 1. **包含全集**:\( \Omega \in \Sigma \)[^1]。 2. **闭合于补运算**:如果 \( A \in \Sigma \),则其补集 \( A^c = \Omega \setminus A \) 也属于 \( \Sigma \)[^1]。 3. **闭合于可列并运算**:对于任意一组可列集合 \( \{A_i\}_{i=1}^\infty \subseteq \Sigma \),它们的并集 \( \bigcup_{i=1}^\infty A_i \) 同样属于 \( \Sigma \)[^1]。 这些性质使得 σ-Algebra 成为构建测度理论的基础工具之一。 #### σ-Algebra 在数学中的应用 在纯数学领域,尤其是测度论和概率论中,σ-Algebra 起着核心作用。以下是几个具体的应用场景: - **测度空间**:在一个给定的空间上定义测度之前,通常需要先指定一个 σ-Algebra 来描述哪些子集可以被测量。例如,Lebesgue 测度就是在实数轴上的 Borel σ-Algebra 基础上扩展而来的。 - **概率模型**:在现代概率论框架下,事件域总是由某一个 σ-Algebra 表示。这允许我们形式化随机变量的概率分布,并通过积分计算期望值和其他统计量。 #### σ-Algebra 在计算机科学中的应用 尽管离散数学占据了计算机科学家日常工作的大部分时间,但连续数学仍然有重要用途,特别是在涉及不确定性建模时。以下是几种可能的应用方向: ##### 数据挖掘与机器学习 当处理复杂的高维数据集时,理解潜在样本空间及其对应的 σ-Algebra 对设计有效的算法至关重要。例如,在贝叶斯网络或其他图形模型中,节点之间的依赖关系可以通过特定类型的 σ-Algebras 进行刻画[^3]。 ```python import numpy as np from scipy.stats import norm # Example: Using Gaussian distribution within a measurable space defined by sigma-algebra. mu, sigma = 0, 0.1 # mean and standard deviation s = np.random.normal(mu, sigma, 1000) def calculate_probability(x_min, x_max): """Calculate probability P(x_min <= X <= x_max).""" cdf_xmin = norm.cdf(x_min, mu, sigma) cdf_xmax = norm.cdf(x_max, mu, sigma) return cdf_xmax - cdf_xmin p = calculate_probability(-0.1, 0.1) print(f"Probability between [-0.1, 0.1]: {p}") ``` 上述代码片段展示了如何利用正态分布来估计某一区间内的概率密度函数值,这是基于 Lebesgue 可测性的基本原理实现的功能。 ##### 形式验证与逻辑推理 某些高级程序分析技术需要用到抽象解释方法,其中状态转移系统的可达性问题往往能转化为关于适当选取的 σ-Algebras 的讨论[^2]。这种方法有助于证明软件的安全性和可靠性属性。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值