Talor Expansion

泰勒展开Taylor Expansion

引入

g ( x ) = a 0 x 0 + a 1 x 1 + a 2 x 2 + ⋯ = ∑ i = 0 ∞ a i x i g(x)=a_0x^0+a_1x^1+a_2x^2+\cdots=\sum_{i=0}^\infty a_ix^i g(x)=a0x0+a1x1+a2x2+=i=0aixi拟合函数 f ( x ) = e x f(x)=e^x f(x)=ex

x = 0 x=0 x=0点附近:
f ( 0 ) = g ( 0 ) = a 0 f ′ ( 0 ) = g ′ ( 0 ) = a 1 f ′ ′ ( 0 ) = g ′ ′ ( 0 ) = 2 a 2 ⋯ f ( n ) ( 0 ) = g ( n ) ( 0 ) = n ! ⋅ a n f(0)=g(0)=a_0\\ f'(0)=g'(0)=a_1\\ f''(0)=g''(0)=2a_2\\ \cdots\\ f^{(n)}(0)=g^{(n)}(0)=n!\cdot a_n\\ f(0)=g(0)=a0f(0)=g(0)=a1f(0)=g(0)=2a2f(n)(0)=g(n)(0)=n!an
思想:利用导数丢掉常数项

多项式拟合有很多表达方式,如这里的利用求导,如FFT的点值表示等

麦克劳林展开的展开系数公式

a n = 1 n ! f ( n ) ( x ) ∣ x = 0 a_n=\frac{1}{n!}f^{(n)}(x)|_{x=0} an=n!1f(n)(x)x=0

于是我们可以得到 f ( x ) = e x f(x)=e^x f(x)=ex的麦克劳林展开
f ( x ) = e x = ∑ i = 0 ∞ 1 i ! x i f(x)=e^x=\sum_{i=0}^\infty\frac{1}{i!}x^i f(x)=ex=i=0i!1xi
注意: 0 ! = 1 0!=1 0!=1

对[注意]的证明:
由 于 n ! = ∏ i = 1 n i 有 ( n − 1 ) ! = n ! n 若 n = 1 ,   则 0 ! = 1 ! 1 = 1 由于n!=\prod_{i=1}^ni\\ 有(n-1)!=\frac{n!}{n}\\ 若n=1,\ 则0!=\frac{1!}{1}=1 n!=i=1ni(n1)!=nn!n=1, 0!=11!=1
麦克劳林展开是泰勒展开在0处的展开,是泰勒展开的特殊情况,展开式不一定与原函数相等( e x e^x ex是个特例)

麦克劳林是牛顿的学生

泰勒展开

看一看泰勒展开系数公式的真正面目:
a n = 1 n ! f ( n ) ( x ) ∣ x = x 0 a_n=\frac{1}{n!}f^{(n)}(x)|_{x=x_0} an=n!1f(n)(x)x=x0
泰勒公式形式
f ( x ) = f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! x + f ′ ′ ( x 0 ) 2 ! x 2 + ⋯ = ∑ i = 0 n f ( i ) ( x 0 ) i ! x i f(x)=\frac{f(x_0)}{0!}+\frac{f'(x_0)}{1!}x+\frac{f''(x_0)}{2!}x^2+\cdots=\sum_{i=0}^n\frac{f^{(i)}(x_0)}{i!}x^i f(x)=0!f(x0)+1!f(x0)x+2!f(x0)x2+=i=0ni!f(i)(x0)xi
好像这个公式可以口切好多好多高考题

解高考题有什么意思?

我们在实际运用的时候更多地只会展开一小部分,后面的项用 R n ( x ) R_n(x) Rn(x)表示,即:
f ( x ) = f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! x + f ′ ′ ( x 0 ) 2 ! x 2 + ⋯ + f ( n ) ( x 0 ) n ! x n + R n ( x ) f(x)=\frac{f(x_0)}{0!}+\frac{f'(x_0)}{1!}x+\frac{f''(x_0)}{2!}x^2+\cdots+\frac{f^{(n)}(x_0)}{n!}x^n+R_n(x) f(x)=0!f(x0)+1!f(x0)x+2!f(x0)x2++n!f(n)(x0)xn+Rn(x)
R n ( x ) R_n(x) Rn(x)对展开式的影响太小,故可以忽略

几个常见展开

e x = 1 + x + 1 2 x 2 + R 3 ( x ) sin ⁡ x = x − 1 6 x 3 + R 5 ( x ) cos ⁡ x = 1 − 1 2 x 2 + R 4 ( x ) e^x=1+x+\frac{1}{2}x^2+R_3(x)\\ \sin x=x-\frac{1}{6}x^3+R_5(x)\\ \cos x=1-\frac{1}{2}x^2+R_4(x)\\ ex=1+x+21x2+R3(x)sinx=x61x3+R5(x)cosx=121x2+R4(x)

⭐️ sin ⁡ \sin sin cos ⁡ \cos cos分别为奇函数,偶函数,展开式也为奇函数,偶函数,并且系数成规律性变化:

01234 ⋯ \cdots
sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx − sin ⁡ x -\sin x sinx − cos ⁡ x -\cos x cosx sin ⁡ x \sin x sinx ⋯ \cdots

引入虚单位 i i i,可以强行把 e x e^x ex sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx表示:
e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx
欧拉公式 学而思的表的梗原来从北京开到了全国各地 − e i π = 1 -e^{i\pi}=1 eiπ=1

我们来试一试 ( 1 + x ) n (1+x)^n (1+x)n

首先多项式定理展开来一波~
( 1 + x ) n = ∑ i = 0 n ( n i ) x i = 1 + n 1 ! x + n ( n − 1 ) 2 ! x 2 + n ( n − 1 ) ( n − 2 ) 3 ! x 3 + ⋯ + x n (1+x)^n=\sum_{i=0}^n\binom{n}{i}x^i=1+\frac{n}{1!}x+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\cdots+x^n (1+x)n=i=0n(in)xi=1+1!nx+2!n(n1)x2+3!n(n1)(n2)x3++xn
再来看看麦克劳林展开
由 于 ( ( 1 + x ) n ) ′ = n ( 1 + x ) n − 1 , ( ( 1 + x ) n ) ′ ′ = n ( n − 1 ) ( 1 + x ) n − 2 , ⋯ ( 1 + x ) n = 1 + n 1 ! x + n ( n − 1 ) 2 ! x 2 + n ( n − 1 ) ( n − 2 ) 3 ! x 3 + ⋯ 由于((1+x)^n)'=n(1+x)^{n-1},((1+x)^n)''=n(n-1)(1+x)^{n-2},\cdots\\ (1+x)^n=1+\frac{n}{1!}x+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\cdots ((1+x)n)=n(1+x)n1,((1+x)n)=n(n1)(1+x)n2,(1+x)n=1+1!nx+2!n(n1)x2+3!n(n1)(n2)x3+
我们发现 n n n不为整数该式仍然成立,这给我们一个启示:广义范围内的组合数/排列/阶乘的求法

小量分析/放缩法

KaTeX parse error: No such environment: eqnarray* at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲*̲}̲ &x\to 0\Righta…

等比数列

( 1 + x ) n (1+x)^n (1+x)n中, n = − 1 n=-1 n=1,可以发现
1 1 + x = 1 − x + x 2 − x 3 + ⋯ 1 1 − x = 1 + x + x 2 + x 3 + ⋯ \frac{1}{1+x}=1-x+x^2-x^3+\cdots\\ \frac{1}{1-x}=1+x+x^2+x^3+\cdots 1+x1=1x+x2x3+1x1=1+x+x2+x3+

ln ⁡ ( 1 + x ) \ln (1+x) ln(1+x)的展开

( ln ⁡ ( 1 + x ) ) ′ = 1 1 + x = 1 − x + x 2 − x 3 + ⋯ ⇒ ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − 1 4 x 4 + ⋯ (\ln(1+x))'=\frac{1}{1+x}=1-x+x^2-x^3+\cdots\\ \Rightarrow\ln(1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots (ln(1+x))=1+x1=1x+x2x3+ln(1+x)=x21x2+31x341x4+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值