智能网联汽车技术-实验三 传感器目标识别

【实验目的】

       1、了解环境感知传感器目标识别的目的和方法, 掌握MATLAB中的目标检测方法。

       2、了解MATLAB的目标检测器和检测函数,掌握车辆识别、行人识别、交通标志识别和道路识别等目标识别方法。

【实验性质】

验证性实验。

【实验要求】

       MATLAB 2020a及以上

      

【实验内容】

       1、使用MATLAB的车辆检测器和检测函数,对图像中的车辆进行识别。

       2、使用MATLAB的行人检测器和检测函数,对图像中的行人进行识别。

       3、使用MATLAB的目标检测器和检测函数,对图像中的交通标志进行识别。

       4、使用MATLAB的道路检测函数,对图像中的车道线进行识别。

【实验步骤】

       1、车辆识别

车辆识别的方法有下面几种方法:

(1)基于视觉传感器的车辆识别

(2)基于毫米波雷达的车辆识别

(3)基于视觉传感器和毫米波雷达融合的车辆识别

(4)基于激光雷达的车辆识别

MATLAB中提供了车辆检测器及检测函数,用于识别车辆。

(1)ACF车辆检测器

ACF(Aggregate Channel Features)聚合通道特征是将多个通道特征结合到一起形成一种聚合特征,结合多通道特征包含的信息,能够高效描述车辆特征。

vehicleDetectorACF为基于聚合通道特征(ACF)的车辆检测器,其调用方式如下:

detector = vehicleDetectorACF(modelName); 

其中,modelName为模型名称,detector为车辆检测器

完善下面的matlab程序:

detector= __ vehicleDetectorACF('front-rear-view');         %定义车辆检测器

I=imrea

### 智能车网联信号灯识别方法 智能网联汽车通过多种传感器技术手段来完成对环境的感知和决策。对于信号灯的识别,通常采用基于计算机视觉的方法结合深度学习框架实现高精度的目标检测与分类。以下是关于智能车如何实现网联信号灯识别的具体方法: #### 1. 数据收集与预处理 为了训练高效的红绿灯识别模型,需要大量的标注数据集作为输入。这些数据可以来源于自然驾驶采集的数据集[^4],其中包含不同天气条件下的红绿灯图像样本。通过对原始图像进行增强操作(如旋转、缩放和平移),增加模型泛化能力。 #### 2. 使用YOLO深度学习框架 在实际项目中,可以选择使用 YOLO (You Only Look Once) 这一先进的目标检测算法来进行实时性的红绿灯检测工作。该框架具有速度快、准确性高的特点,在嵌入式设备上也能良好运行[^2]。具体流程如下: - 构建适合比赛需求的小型卷积神经网络结构; - 调整超参数以适应特定硬件性能限制; - 验证最终版本是否满足竞赛标准。 ```python import torch from yolov5 import detect def load_model(): model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') return model model = load_model() results = model(imgs) ``` #### 3. 提升鲁棒性和抗干扰能力 考虑到比赛中可能存在光照变化或者遮挡等情况影响正常判断效果,则需额外考虑提升系统的稳健程度。可以通过引入对抗攻击机制测试现有模型是否存在漏洞,并针对性优化权重矩阵;另外还可以加入传统CV特征提取方式辅助定位关键区域位置信息。 --- ### 实验室支持与资源利用 高校内部往往配备有专门用于科研探索的教学设施——例如提到过的 **RTRC Pro** 平台即为此类典型代表之一[^1]。它不仅提供了完整的软硬件开发环境供学生们动手实践各类复杂任务,还特别强调了针对无人自动驾驶领域核心技术的学习机会,比如交通标志解析、激光测距绘图等功能模块均可以直接服务于本次主题研究方向之上。 此外,《基于宽带移动互联网的智能汽车和智慧交通应用示范工程》等相关国家级项目的开展也为行业人才培养注入新鲜血液[^3],鼓励更多青年才俊投身于前沿科技阵地之中贡献自己的力量! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值