目标检测系列—YOLOv9 详解
1. 引言
YOLOv9 是 Ultralytics 团队于 2024 年发布的目标检测算法,是 YOLO 系列的最新版本。YOLOv9 在 YOLOv8 的基础上进行了进一步的优化,提升了检测精度、推理速度和模型的适应性。它不仅在传统目标检测任务中表现优异,还在小物体检测、极限环境下的部署方面有着更为出色的表现。
YOLOv9 主要特点:
- 多尺度目标检测,在不同尺寸的物体上均有优异表现。
- 引入 Transformer 结构,改善长距离依赖问题,提高模型精度。
- 高效的计算和推理策略,进一步降低延迟,提升实时检测性能。
- 更高效的训练机制,加速模型收敛,减少训练时间。
本文将详细解析 YOLOv9 的 网络结构、关键改进点,并提供 PyTorch 代码示例。
2. YOLOv9 的关键改进
改进点 | 描述 |
---|---|
1. Transformer 结构 | 引入 Transformer 进行长距离特征建模,增强模型表达能力 |
2. 多尺度检测优化 | 改进多尺度目标的检测精度,尤其适用于小物体检测 |
3. 高效的轻量化设计 | 减少模型参数,适应边缘设备和嵌入式设备 |
4. 动态计算图优化 | 自适应调整推理过程中所需的计算资源,提高效率 |
5. 强化的损失函数 | 提升小物体和密集目标的检测精度 |
YOLOv9 在 COCO 数据集上的 AP50 达到了 78.5%,相比 YOLOv8 进一步提升。
3. YOLOv9 的网络结构
YOLOv9 采用了 混合结构,结合了传统卷积神经网络(CNN)和 Transformer 模块,在传统卷积的基础上加入了自注意力机制,使得模型能够有效地捕捉长距离的依赖信息。
3.1 Transformer 结构
YOLOv9 引入 Transformer 结构 主要用于捕捉全局特征,特别是在处理小物体检测时,能够显著提高模型性能。
Transformer 代码示例(PyTorch 实现):
import torch
import torch.nn as nn
class TransformerBlock(nn.Module):
def __init__(self, embed_size, num_heads):
super().__init__()
self.attention = nn.MultiheadAttention(embed_size, num_heads)
self.fc = nn.Linear(embed_size, embed_size)
self.norm = nn.LayerNorm(embed_size)
def forward(self, x):
attention_out, _ = self.attention(x, x, x)
x = self.norm(x + attention_out)
x = self.fc(x)
return x
model = TransformerBlock(256, 8)
print(model)
4. YOLOv9 的多尺度检测
YOLOv9 在检测多尺度目标时进行了优化,特别是在处理小物体和密集物体时,采用了新的 特征金字塔结构,有效增强了小物体的检测能力。
多尺度检测代码示例(PyTorch 实现):
class MultiScaleDetection(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(256, 128, kernel_size=1)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.conv2 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.upsample(x)
x = self.conv2(x)
return x
model = MultiScaleDetection()
print(model)
5. YOLOv9 的损失函数
YOLOv9 在损失函数方面进行了优化,尤其是在小物体和密集物体检测时,增强了 IoU 损失函数 和 中心度损失函数,提升了小物体的定位精度。
损失函数代码示例(PyTorch 实现):
import torch
def focal_loss(pred, target):
alpha = 0.25
gamma = 2
pred = torch.sigmoid(pred)
loss = -alpha * target * torch.pow(1 - pred, gamma) * torch.log(pred) - \
(1 - alpha) * (1 - target) * torch.pow(pred, gamma) * torch.log(1 - pred)
return torch.mean(loss)
def ciou_loss(pred_boxes, target_boxes):
iou = torch.sum(torch.min(pred_boxes, target_boxes)) / torch.sum(torch.max(pred_boxes, target_boxes))
center_dist = torch.sum((pred_boxes[:, :2] - target_boxes[:, :2]) ** 2)
loss = 1 - iou + center_dist
return loss
6. YOLOv9 的训练和部署
YOLOv9 继续使用 PyTorch 进行训练,并支持导出到多种格式。
6.1 训练 YOLOv9
git clone https://github.com/ultralytics/yolov9.git
cd yolov9
pip install -r requirements.txt
python train.py --batch 16 --epochs 50 --data coco.yaml --weights yolov9.pt
6.2 导出 YOLOv9 到 ONNX
python export.py --weights yolov9.pt --include onnx
7. 结论
YOLOv9 进一步提升了 多尺度目标检测、小物体检测、Transformer 特征建模 等方面的能力,尤其在实时检测和边缘设备上的表现更加出色。结合新引入的 Transformer 结构,使得 YOLOv9 在精度和推理速度上均有显著优势。
下一篇博客将介绍 YOLOv10 的前沿创新,敬请期待!
如果觉得本文对你有帮助,欢迎点赞、收藏并关注! 🚀