《线性代数》第一章第二节“矩阵的运算”笔记

第二节 矩阵的运算

一、矩阵的加法(只有同型矩阵才能进行加法)
  • 定义 2: 设矩阵 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n B = [ a i j ] m × n B = [a_{ij}]_{m \times n} B=[aij]m×n,则矩阵 C = [ a i j + b i j ] m × n C = [a_{ij} + b_{ij}]_{m \times n} C=[aij+bij]m×n称为矩阵 A A A与矩阵 B B B的和,记作 C = A + B C = A + B C=A+B,即:

C = A + B = [ a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋯ ⋯ ⋱ ⋯ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ] C = A + B = \begin{bmatrix} a_{11}+b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21}+b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \cdots & \cdots & \ddots & \cdots \\ a_{m1}+b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{bmatrix} C=A+B= a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn

二、数与矩阵相乘
  • 定义 3:设 λ \lambda λ为数,矩阵 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n,则矩阵 [ λ a i j ] m × n [\lambda a_{ij}]_{m \times n} [λaij]m×n称为数 λ \lambda λ与矩阵 A A A的乘积,记作 λ A \lambda A λA(或 A λ A\lambda Aλ),即

λ A = A λ = [ λ a 11 λ a 12 ⋯ λ a 1 n λ a 21 λ a 22 ⋯ λ a 2 n ⋮ ⋮ ⋱ ⋮ λ a m 1 λ a m 2 ⋯ λ a m n ] \lambda A = A \lambda = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{bmatrix} λA=Aλ= λa11λa21λam1λa12λa22λam2λa1nλa2nλamn

\qquad 设矩阵 A = [ a i j ] m × n A = [a_{ij}]_{m \times n} A=[aij]m×n,记 − A = ( − 1 )   ⋅   A = [ − 1   ⋅   a i j ] = [ − a i j ] -A = (-1)\ \cdot\ A = [-1\ \cdot\ a_{ij}] = [-a_{ij}] A=(1)  A=[1  aij]=[aij] − A -A A称为 A A A负矩阵

\qquad 对于 m × n m \times n m×n矩阵 A A A B B B,把 A − B = A + ( − B ) = [ a i j − b i j ] m × n A - B = A + (-B) = [a_{ij} - b_{ij}]_{m \times n} AB=A+(B)=[aijbij]m×n称为矩阵 A A A与矩阵 B B B减法,矩阵的加法和数乘矩阵统称为矩阵的线性运算.

  • 矩阵的线性运算满足以下运算规律

( 1 )   A + B = B + A ; ( 2 )   ( A + B ) + C = A + ( B + C ) ; ( 3 )   A + O = A ; ( 4 )   A + ( − A ) = O ; ( 5 )   1 A = A ; ( 6 )   λ ( μ A ) = μ ( λ A ) = ( λ μ ) A ; ( 7 )   λ ( A + B ) = λ A + λ B ; ( 8 )   ( λ + μ ) A = λ A + μ A . \begin{align*} &(1)\ A + B = B + A; && (2)\ (A + B) + C = A + (B + C); \\ &(3)\ A + \mathbf{O} = A; && (4)\ A + (-A) = \mathbf{O}; \\ &(5)\ 1A = A; && (6)\ \lambda(\mu A) = \mu(\lambda A) = (\lambda\mu)A; \\ &(7)\ \lambda(A+B) = \lambda A + \lambda B; && (8)\ (\lambda + \mu)A = \lambda A + \mu A. \end{align*} (1) A+B=B+A;(3) A+O=A;(5) 1A=A;(7) λ(A+B)=λA+λB;(2) (A+B)+C=A+(B+C);(4) A+(A)=O;(6) λ(μA)=μ(λA)=(λμ)A;(8) (λ+μ)A=λA+μA.

三、矩阵与矩阵相乘
  • 定义 4:设 A = [ a i j ] A = [a_{ij}] A=[aij] m × s m \times s m×s矩阵, B = [ b i j ] B = [b_{ij}] B=[bij] s × n s \times n s×n矩阵,那么规定矩阵 A A A B B B的乘积 A B AB AB是一个 m × n m \times n m×n矩阵,且记为:

C = A B = [ c i j ] C = AB = [c_{ij}] C=AB=[cij]

\quad 矩阵 A A A B B B的乘积矩阵 C C C的第 i i i行第 j j j列的元素 c i j c_{ij} cij是由矩阵 A A A的第 i i i行的元素和矩阵 B B B的第 j j j对应元素的乘积之和,即
[ a 11 ⋯ a 1 j ⋯ a 1 s ⋮ ⋮ ⋮ a i 1 ⋯ a i j ⋯ a i s ⋮ ⋮ ⋮ a m 1 ⋯ a m j ⋯ a m s ] [ b 11 ⋯ b 1 j ⋯ b 1 s ⋮ ⋮ ⋮ b i 1 ⋯ b i j ⋯ b i s ⋮ ⋮ ⋮ b m 1 ⋯ b m j ⋯ b m s ] = [ c 11 ⋯ c 1 j ⋯ c 1 s ⋮ ⋮ ⋮ c i 1 ⋯ c i j ⋯ c i s ⋮ ⋮ ⋮ c m 1 ⋯ c m j ⋯ c m s ] \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1s} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{is} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{ms} \\ \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1s} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ b_{i1} & \cdots & b_{ij} & \cdots & b_{is} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ b_{m1} & \cdots & b_{mj} & \cdots & b_{ms} \\ \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1s} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{is} \\ \vdots & \qquad & \vdots & \qquad & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{ms} \\ \end{bmatrix} a11ai1am1a1jaijamja1saisams b11bi1bm1b1jbijbmjb1sbisbms = c11ci1cm1c1jcijcmjc1sciscms

  • 注意:

    1. 矩阵乘法一般不满足交换律,即 A B ≠ B A AB \neq BA AB=BA
    2. A B = O AB = \mathbf{O} AB=O不能推出 A = O A = \mathbf{O} A=O B = O B = \mathbf{O} B=O
    3. A B = A C AB = AC AB=AC,且 A ≠ O A \neq \mathbf{O} A=O时,不能推出 B = C B = C B=C
    4. A B = B C AB = BC AB=BC,且 C ≠ O C \neq \mathbf{O} C=O时,不能推出 A = B A = B A=B
  • 矩阵乘法运算规律
    ( 1 )   ( A B ) C = A ( B C ) ; ( 2 )   A ( B + C ) = A B + A C ; ( 3 )   ( B + C ) A = B A + C A ; ( 4 )   k ( A B ) = ( k A ) B = A ( k B ) ; ( 5 )   E m A m × n = A m × n E n = A m × n ; ( 6 )   O A m × n = O , A m × n O = O . \begin{align*} & (1)\ (AB)C = A(BC); && (2)\ A(B+C) = AB + AC; \\ & (3)\ (B + C)A= BA + CA; && (4)\ k(AB) = (kA)B = A(kB); \\ & (5)\ E_{m}A_{m \times n} = A_{m \times n}E_{n} = A_{m \times n}; && (6)\ \mathbf{O}A_{m \times n} = \mathbf{O}, A_{m \times n}\mathbf{O} = \mathbf{O}. \end{align*} (1) (AB)C=A(BC);(3) (B+C)A=BA+CA;(5) EmAm×n=Am×nEn=Am×n;(2) A(B+C)=AB+AC;(4) k(AB)=(kA)B=A(kB);(6) OAm×n=O,Am×nO=O.

  • 线性变换

如果变量 x 1 ,   x 2 ,   ⋯   ,   x n x_{1},\ x_{2},\ \cdots,\ x_{n} x1, x2, , xn与变量 y 1 ,   y 2 ,   ⋯   ,   y n y_{1},\ y_{2},\ \cdots,\ y_{n} y1, y2, , yn之间存在关系式:
{ y 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n   , y 2 = a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n   , ⋯   ⋯   ⋯ y m = a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n   , \begin{cases} &y_{1} = a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n}\ ,\\ &y_{2} = a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n}\ ,\\ &\quad\quad\quad\quad\quad\cdots\ \cdots\ \cdots \newline &y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n}\ ,\\ \end{cases} y1=a11x1+a12x2++a1nxn ,y2=a21x1+a22x2++a2nxn ,  ym=am1x1+am2x2++amnxn ,
则 称之为从变量 x 1 ,   x 2 ,   ⋯   ,   x n x_{1},\ x_{2},\ \cdots,\ x_{n} x1, x2, , xn到变量 y 1 ,   y 2 ,   ⋯   ,   y n y_{1},\ y_{2},\ \cdots,\ y_{n} y1, y2, , yn线性变换,由矩阵乘法的定义可知,关系式可表示为:
Y = A X Y = AX Y=AX
其中,
Y = [ y 1 y 2 ⋮ y m ] , X = [ x 1 x 2 ⋮ x n ] , A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] Y = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} ,\quad X = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix} ,\quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} Y= y1y2ym ,X= x1x2xn ,A= a11a21am1a12a22am2a1na2namn
  \ \qquad\qquad\qquad\qquad\qquad\qquad  线性变换 Y = A X Y = AX Y=AX与矩阵 A A A之间存在着一一对应关系

  • 定义 5:若 A A A n n n方阵,则称 k k k A A A连乘为 A A A k k k次幂,记作 A k A^{k} Ak,即
    A k = A ∙ A ∙ ⋯ ∙ A ⏟ k 个 ( k 为正整数 ) A^{k} = \underbrace{A \bullet A \bullet \cdots \bullet A}_{k个}(k为正整数) Ak=k AAA(k为正整数)
    同时可以推出:
    A k A l = A k + l ,   ( A k ) l = A k l ,   k , l ∈ N ∗ A^{k}A^{l} = A^{k + l},\ (A^{k})^{l} = A^{kl},\ k,l \in \mathbb{N}^{*} AkAl=Ak+l, (Ak)l=Akl, k,lN

注意:

\quad 一般情形下, ( A B ) k ≠ A k B k (AB)^{k} \neq A^{k}B^{k} (AB)k=AkBk。但是,当且仅当 A A A B B B可交换时 ( A B ) k = A k B k (AB)^{k} = A^{k}B^{k} (AB)k=AkBk

补充:

\quad 二项式定理:当 A B = B A AB = BA AB=BA,即 A A A, B B B可交换时,有:
( A + B ) n = C n 0 A 0 B n + C n 1 A 1 B n − 1 + ⋯ + C n k A k B n − k + ⋯ + C n n A n B 0 (A + B)^{n} = C^{0}_{n}A^{0}B^{n} + C^{1}_{n}A^{1}B^{n - 1} + \cdots + C^{k}_{n}A^{k}B^{n - k} + \cdots + C^{n}_{n}A^{n}B^{0} (A+B)n=Cn0A0Bn+Cn1A1Bn1++CnkAkBnk++CnnAnB0

四、矩阵的转置
  • 定义 6:设 A = [ a i j ] A = [a_{ij}] A=[aij] m × n m \times n m×n矩阵,规定 A A A的转置矩阵 A T A^{T} AT(或 A ′ A^{'} A)是一个 n × m n \times m n×m矩阵,且
    A T = [ a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋯ a 1 n a 2 n ⋯ a m n ] A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \\ \end{bmatrix} AT= a11a12a1na21a22a2nam1am2amn

  • 性质:

    1. A A A对称矩阵时,有 a i j = a j i ( i ,   j = 1 ,   2 ,   ⋯   ,   n ) a_{ij} = a_{ji}(i,\ j = 1,\ 2,\ \cdots,\ n) aij=aji(i, j=1, 2, , n),即 A T = A A^{T} = A AT=A
    2. A A A反对称矩阵时,有 a i j = − a j i ( i ,   j = 1 ,   2 ,   ⋯   ,   n ) a_{ij} = - a_{ji}(i,\ j = 1,\ 2,\ \cdots,\ n) aij=aji(i, j=1, 2, , n),即 A T = A A^{T}= A AT=A.
  • 矩阵的转置运算的运算规律

( 1 )   ( A T ) T = A ; ( 2 )   ( A + B ) T = A T + B T ; ( 2 )   ( k A ) T = k A T ( k 是数 ) ; ( 4 )   ( A B ) T = B T A T . \begin{align*} & (1)\ (A^{T})^{T} = A; && (2)\ (A + B)^T = A^{T} + B^{T}; \\ & (2)\ (kA)^{T} = kA^{T}(k是数); && (4)\ (AB)^{T} = B^{T}A^{T}. \\ \end{align*} (1) (AT)T=A;(2) (kA)T=kAT(k是数);(2) (A+B)T=AT+BT;(4) (AB)T=BTAT.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

略无慕艳意

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值