香橙派OriengePi AiPro 华为昇腾芯片开发板开箱测评

香橙派OriengePi AiPro 华为昇腾芯片开发板开箱测评

前言

博主有幸受邀CSDN测评香橙派与华为昇腾共同研发的OriengePi AiPro的开箱测评,本文会对正常使用的一些情况做记录,包括常用配置,docker配置使用,以及可能包含机器人相关的一些配置等,同时也会对产品的性能及使用的感受做分享。

2023.12月初,香橙派联合华为发布了基于昇腾的Orange Pi AIpro开发板,提供8/20TOPS澎湃算力,能覆盖生态开发板者的主流应用场景,让用户实践各种创新场景,并为其提供配套的软硬件。而价格更是极为亲民,8TOPS、8GB内存的创客价/预售价仅为799元,8TOPS、16GB内存的创客价/预售价仅为999元。1

OrangePi AIpro(8T)采用昇腾AI技术路线,具体为4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求2

OrangePi AIpro

硬件相关及配置

外观

包含一个充电头,一个type c数据线,及香橙派主体

充电头支持:5V⎓3A/9V⎓3A/12V⎓3A/15V⎓3A/20V⎓3.25A

在这里插入图片描述

在这里插入图片描述

接口

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

配置虚拟桌面

这里通过cat /proc/cpuinfo查到cpu架构是arm v8,wget下载对应的nomachine。

如果没有显示屏无法联网,可以通过路由器接有线到香橙派自动获取ip,通过路由器后台查看ip地址,系统默认开启了sshd,可以远程连接。

管理员账号:root
普通账号:HwHiAiUser
密码:Mind@123
wget https://download.nomachine.com/download/8.11/Arm/nomachine_8.11.3_3_arm64.deb

在这里插入图片描述

安装

sudo apt-get update
cd ~/Downloads
sudo dpkg -i nomachine_8.11.3_3_arm64.deb

# -----OUT PUT--------
Unpacking nomachine (8.11.3-3) ...
Setting up nomachine (8.11.3-3) ...
NX> 700 Starting installation at: Tue, 21 May 2024 22:14:35.
NX> 700 Using installation profile: Ubuntu.
NX> 700 Installation log is: /usr/NX/var/log/nxinstall.log.
NX> 700 Installing nxrunner version: 8.11.3.
NX> 700 Installing nxplayer version: 8.11.3.
NX> 700 Installing nxnode version: 8.11.3.
NX> 700 Installing nxserver version: 8.11.3.
NX> 700 Installation completed at: Tue, 21 May 2024 22:14:58.
NX> 700 NoMachine was configured to run the following services:
NX> 700 NX service on port: 4000

这时就能通过本地安装的nomachine远程连接过去了。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

网络配置

如果是无线,记得勾选所有用户都可使用,否则必须登录用户后才会自动连接无线

在这里插入图片描述

拓展swap内存

由于sd卡安装docker镜像已经占用比较多的存储空间,这里使用外部优盘拓展存储,查看当前外界存储:

fdisk -l

在这里插入图片描述

挂载到你的目标路径,

mount /dev/sda /home/HwHiAiUser/workspace/udisk/
df -h

在这里插入图片描述

创建swap文件

sudo dd if=/dev/zero of=/home/HwHiAiUser/workspace/udisk/swapfile bs=1024 count=16777216

在这里插入图片描述

格式化分区文件

sudo mkswap /home/HwHiAiUser/workspace/udisk/swapfile

# -----Out Put-----
mkswap: /home/HwHiAiUser/workspace/udisk/swapfile: insecure permissions 0755, fix with: chmod 0600 /home/HwHiAiUser/workspace/udisk/swapfile
Setting up swapspace version 1, size = 16 GiB (17179865088 bytes)
no label, UUID=7baed9dd-d486-4b99-98bc-65ff3341655a

启动swap区

sudo swapon /home/HwHiAiUser/workspace/udisk/swapfile

校验是否启用,可以看到下图已经出现了一个15G的swap区

free -h

# -----Out Put-----
               total        used        free      shared  buff/cache   available
Mem:           7.4Gi       1.2Gi       599Mi        48Mi       5.6Gi       6.0Gi
Swap:           15Gi          0B        15Gi

停止使用swap区代码如下

sudo swapoff /home/HwHiAiUser/workspace/udisk/swapfile

软件相关及配置

docker

我的系统已经默认安装了docker,如果未安装可以自行下载。

# 报警如下处理方法
docker ps
permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get "http://%2Fvar%2Frun%2Fdocker.sock/v1.24/containers/json": dial unix /var/run/docker.sock: connect: permission denied

添加当前用户到docker组,即可解决上述报警

sudo gpasswd -a $USER docker  # 将当前用户添加至docker用户组
newgrp docker                 # 更新docker用户组

基础镜像搭建

这里打算以ros2 humble jammy做为此次的基础镜像。

docker pull ros:humble-perception-jammy

# -----OUT PUT--------
humble-perception-jammy: Pulling from library/ros
9b076355b79b: Pull complete
a0b98a01e18c: Pull complete
da8c8a40f001: Pull complete
aeb1b0e62af2: Pull complete
c44d471f288e: Pull complete
509cd74b317a: Pull complete
79337a550a6b: Pull complete
26db6393e0d5: Pull complete
8c7673b38fa6: Pull complete
040d7a25c186: Pull complete
27d776fd0281: Pull complete
799c0af82dd6: Pull complete
Digest: sha256:76cbc14b927751267c5a3068343cb532f71a157d2b1a3a9ed1c116e571149f71
Status: Downloaded newer image for ros:humble-perception-jammy

具体搭建博主写了一篇文章可以参考《raspberry pi/orienge pi等arm架构硬件打包ros humble docker开发镜像-CSDN博客

pytorch安装及匹配

查看版本匹配可以参考这里

torchtorchvisionPython
main / nightlymain / nightly>=3.8, <=3.11
2.20.17>=3.8, <=3.11
2.10.16>=3.8, <=3.11
2.00.15>=3.8, <=3.11

博主选择的是torch 2.2和torchvision 0.17安装如下:

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install torch==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torchvision==0.17.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

软件测试使用

yolo v8测试使用

下载安装yolo v8

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

运行测试程序:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

运行结果如下:

在这里插入图片描述
下图是训练所需的时常,训练3个epoch,4张图,117个实例,训练时长大约为36s

在这里插入图片描述

detect 4个人,1辆车,一个停车标志所用时间为533.8ms

在这里插入图片描述

模型转换

查询当前的npu名称

npu-smi info

在这里插入图片描述
模型转换命令,根据情况设置参数,博主用的是上边这句:

atc --model=best.onnx --framework=5 --output=best --input_format=NCHW --log=error --soc_version=Ascend310B4

atc --model=yolo.onnx --framework=5 --output=yolo --input_format=NCHW --input_shape="input_image:1,3,640,640" --log=error --soc_version=Ascend310B4

在这里插入图片描述
博主测试了两次,转换时间大概需要28min。

总结

至此本篇对于香橙派在配置使用上做了日常使用和一些模型训练、推理、转换上的基本使用,前期主要实现了常用配置及docker、yolo v8的安装使用,开发板的使用体感流畅度都能保证,性能也能满足正常的使用,不管是运行docker还是yolo都能有不错的流畅性。开源社区也提供了大量的技术文档,让初入手的同学也能根据文档对使用及配置有总体的了解,发现问题同样也能在社区找到对应的解决流程。

在通过华为定义的格式ATC(Ascend Tensor Compiler)异构计算架构CANN体系下的模型转换的时间稍微有点长,但是调用已经转好的om模型运行时,推理速度非常快,这里凸显了8Tops npu算力对于深度学习领域方面有质的提升。

香橙派 AIpro是一款非常优秀 AI 边缘计算开发板,优秀的价格推动AI 部署的普遍化的进程,让每一个人都有机会能使用到高性能的AI开发硬件,推动AI整个生态环境的进步,希望有更多的小伙伴能在类似这种AI开发板的基础上学习和成长。


  1. 香橙派AIpro学习资源一站式导航_Orange Pi AIpro_昇腾论坛 (hiascend.com) ↩︎

  2. Orange Pi AIpro Orange Pi官网-香橙派(Orange Pi)开发板,开源硬件,开源软件,开源芯片,电脑键盘 ↩︎

<think>嗯,用户想了解如何使用香橙AIPro 20T进行开发或配置。首先,我需要整理相关资料。根据提供的引用内容,香橙AIPro 20T搭载了昇腾AI处理器,支持20TOPS INT8计算能力,内存有12GB和24GB版本,适用于教育、机器人、无人机等场景。另外,环境配置和基础应用的测评中提到高性价比、开源社区支持以及丰富的产品线。 用户可能需要从基础配置开始,比如系统安装、开发环境搭建、AI应用开发等步骤。引用中提到有Ubuntu和OpenEuler两种系统可选,需要指导用户下载镜像并安装。然后,开发环境配置部分应该包括CANN套件和Python库的安装,因为昇腾处理器依赖这些工具。还要提到基础应用,比如图像分类的示例,这样用户能快速上手。 此外,用户可能关心资源获取和社区支持,所以需要列出官网、论坛、文档和技术支持的链接。可能的问题包括硬件接口使用、性能优化方法,以及与其他开发板的对比,这些可以作为相关问题推荐。 需要注意按照系统指令,数学公式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学公式,但如果有性能参数如20TOPS,可能需要用行内公式表示。不过引用中已经明确写出20TOPS,可能不需要额外公式。确保回答结构清晰,分步骤说明,并引用提供的资料作为支持。</think>### 香橙 AIPro 20T 开发配置指南 以下是基于香橙 AIPro 20T 的开发与配置流程,结合其硬件特性和开源资源[^2][^3]: --- #### **一、基础环境配置** 1. **系统安装** - 下载官方镜像:支持 Ubuntu 20.04 或 OpenEuler 系统,需从[香橙官网](https://www.orangepi.org/)获取镜像文件[^1]。 - 使用工具(如 BalenaEtcher)将镜像烧录至 MicroSD 卡,插入开发板启动。 2. **开发环境搭建** - **CANN 套件安装**:昇腾 AI 处理器依赖华为的 CANN(Compute Architecture for Neural Networks)工具包,需通过命令行安装: ```bash wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/<版本号>/Ascend-cann-toolkit_<版本号>_linux-aarch64.run sudo ./Ascend-cann-toolkit_<版本号>_linux-aarch64.run --install ``` - **Python 库支持**:安装 MindSpore 或 PyTorch 的昇腾适配版本,例如: ```bash pip install mindspore-ascend ``` --- #### **二、基础应用开发示例** 以下以图像分类为例说明开发流程: ```python # 示例:使用昇腾 NPU 加速的 ResNet 模型推理 from mindspore import context, load_checkpoint from mindspore.model_zoo.resnet import resnet50 # 设置昇腾硬件环境 context.set_context(device_target="Ascend") model = resnet50(pretrained=False) load_checkpoint("resnet50.ckpt") # 加载预训练模型 # 执行推理 output = model.predict(input_data) # input_data 需预处理为张量 ``` --- #### **三、资源与支持** 1. **文档与工具** - 官方文档:详细接口说明和案例参考[香橙 AIPro 开发手册](https://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-AIpro.html)。 - 模型库:华为昇腾社区提供预训练模型和优化工具。 2. **硬件接口使用** - 通过 40-pin GPIO 连接传感器或执行器,支持 UART/I2C/SPI 协议。 - 双 Type-C 接口支持 OTG 模式和 10Gbps 数据传输。 --- #### **四、性能优化建议** - **内存管理**:24GB 版本适合大规模模型推理,可通过 `npu-smi` 工具监控显存占用。 - **多线程并行**:利用昇腾处理器的多核特性,通过 OpenMP 或 Python 多进程提升吞吐量。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器人梦想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值