目录
前言
一、多模态大模型——以VisualGLM实现图文转换(入门级)
1. 安装相关依赖包
2. 导入依赖库、导入model & processor
3. 导入图片链接
4. 图生文
5. 图片内容推理
二、LLM——基于文心大模型的金融知识库问答(进阶级)
0. 环境配置
1. 载入本地非结构化文档
2. 文档split为若干chunk文本块
3. 文本Embedding–>Vectors
4. 存入向量数据库(以FAISS为例,常见向量数据库还有Milvus)
5. Query查询(用户提问)
6. Prompt合成
7. 调用LLM模型,实现答案生成任务(以文心大模型为例)
8. RAG流程封装(将提示词Prompt输入给文心大模型,获得输出结果)
三、推荐项目(综合级)
前言
依托 aistudio 平台内容,章节一呈现了一个入门级demo(小白友好),
以VisualGLM(多模型大模型)为例实现了图生文;
章节二呈现了一个进阶版demo(适合有一定LLM基础的人群食用),
以文心大模型(LLM+RAG)为例实现了金融知识库问答(参考aistudio上精品项目);
章节三推荐了数个综合级、系统化的项目(适合从事/预从事 LLM/AIGC 岗的人群食用),
把每个项目深挖吃透后,基本可以从事相关岗。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
一、多模态大模型——以VisualGLM实现图文转换(入门级)
1. 安装相关依赖包
用git命令从github上下载visualglm-6b模型到本地,git PaddleMIX安装包、pip其它相关依赖包。
!git clone http://git.aistudio.baidu.com/aistudio/visualglm-6b.git
!git clone https://github.com/PaddlePaddle/PaddleMIX
!pip install soundfile librosa
2. 导入依赖库、导入model & processor
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["FLAGS_use_cuda_managed_memory"] = "true"
import requests
from PIL import Image
from PaddleMIX.paddlemix import VisualGLMForConditionalGeneration, VisualGLMProcessor
import warnings
warnings.filterwarnings('ignore')
# 设置visualglm-6b预训练模型的本地路径(PS:本地导入比直接云端下载速度会快很多)
pretrained_name_or_path = "aistudio/visualglm-6b"
model = VisualGLMForConditionalGeneration.from_pretrained(pretrained_name_or_path, from_aistudio=True,dtype="float32")
model.eval()
processor = VisualGLMProcessor.from_pretrained(pretrained_name_or_path,from_aistudio=True)
3. 导入图片链接
# 图片链接
# url = "https://paddlenlp.bj.bcebos.com/data/images/mugs.png"
url = 'https://i02piccdn.sogoucdn.com/5dd40dedd7107cc5'
image = Image.open(requests.get(url, stream=True).raw)
# 配置模型参数
generate_kwargs = {
"max_length": 1024,
"min_length": 10,
"num_beams": 1,
"top_p": 1.0,
"top_k": 1,
"repetition_penalty": 1.2,
"temperature": 0.8,
"decode_strategy": "sampling",
"eos_token_id": processor.tokenizer.eos_token_id,
}
图1
4. 图生文
# Epoch 1
query = "写诗描述一下这个场景"
history = []
inputs = processor(image, query)
generate_ids, _ = model.generate(**inputs, **generate_kwargs)
responses = processor.get_responses(generate_ids)
history.append([query, responses[0]])
print(responses)
图2
5. 图片内容推理
# Epoch 2
query = "这部电影的导演是谁?"
inputs = processor(image, query, history=history)
generate_ids, _ = model.generate(**inputs, **generate_kwargs)
responses = processor.get_responses(generate_ids)
history.append([query, responses[0]])
print(responses)
图3
二、LLM——基于文心大模型的金融知识库问答(进阶级)
图4. 整体流程
参考链接:https://aistudio.baidu.com/projectdetail/6682781?channelType=0&channel=0
0. 环境配置
# (1)下载PDF文档
!wget https://zihao-code.obs.cn-east-3.myhuaweicloud.com/20230709-langchain/carbon.pdf -i https://pypi.tuna.tsinghua.edu.cn/simple
!wget https://zihao-code.obs.cn-east-3.myhuaweicloud.com/20230709-langchain/car.pdf -i https://pypi.tuna.tsinghua.edu.cn/simple
# (2)安装依赖环境
!pip install transformers langchain openai unstructured tiktoken faiss-cpu sentence_transformers pypdf -i https://pypi.tuna.tsinghua.edu.cn/simple
1. 载入本地非结构化文档
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import PyPDFLoader
# 加载所有非结构化文件,提取文本
loaders = [
PyPDFLoader('car.pdf'),
PyPDFLoader('carbon.pdf')
]
# loaders = [
# UnstructuredFileLoader('思修2018.txt'),
# UnstructuredFileLoader('近代史2018.txt'),
# PyPDFLoader('马原2023.pdf'),
# PyPDFLoader('毛概2023.pdf')
# ]
# 把每个非结构化文件存入docs列表,并保存了对应出处
docs = []
for loader in loaders:
docs.extend(loader.load())
2. 文档split为若干chunk文本块
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=30, separator='\n')
splits = text_splitter.split_documents(docs)
print(len(splits))
3. 文本Embedding–>Vectors
from langchain.embedding import HuggingFaceEmbeddings
embedding_model = 'moka-ai/m3e-base'
embedding = HuggingFaceEmbeddings(model_name=embedding_model)
4. 存入向量数据库(以FAISS为例,常见向量数据库还有Milvus)
from langchain.vectorstores import FAISS
# 提取每个chunk文本块的Embedding向量,构建知识库文本-向量数据库
vector_store = FAISS.from_documents(splits, embeddings)
5. Query查询(用户提问)
query = '政府发布了哪些双碳政策文件'
# 针对query进行相似性搜索,从知识向量库(FAISS)检索出最相似的TOP K个Chunk
K = 5
docs_and_scores = vector_store.similarity_search_with_score(question, k=K)
print(docs_and_scores)
# 打印TOP K Chunk的来源、字数、和query相似度打分
for i in range(docs_and_scores):
source = docs_and_scores[i][0].metadata['source']
content = docs_and_scores[i][0].page_content
similarity = docs_and_scores[i][1]
print(f'来源:{source}, 字数:{len(content)}, 相似度打分:{similarity}')
print(content[:30]+'......')
print('————————————————————————————————————')
图5
6. Prompt合成
# 6.1. 生成背景内容(Top K个相似内容拼接)
context = ''
for i in docs_and_scores:
context +=doc[0].page_content
context +='\n'
print(context)
# 6.2. 生成提示词
prompt = f'你是一个学习助手,请根据下面的已知信息回答问题,你只需要回答和已知信息相关的问题,如果问题和已知信息不相关,你可以直接回答"不知道" 问题:{query} 已知信息:{context}'
图6
7. 调用LLM模型,实现答案生成任务(以文心大模型为例)
import requests
class BaiduErnie:
host: str = "https://aip.baidubce.com"
client_id: str = ""
client_secret: str = ""
access_token: str = ""
def __init__(self, client_id: str, client_secret: str):
self.client_id = client_id
self.client_secret = client_secret
self.get_access_token()
def get_access_token(self) -> str:
url = f"{self.host}/oauth/2.0/token?grant_type=client_credentials&client_id={self.client_id}&client_secret={self.client_secret}"
response = requests.get(url)
if response.status_code == 200:
self.access_token = response.json()["access_token"]
return self.access_token
else:
raise Exception("获取access_token失败")
def chat(self, messages: list, user_id: str) -> tuple:
if not self.access_token:
self.get_access_token()
url = f"{self.host}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant?access_token={self.access_token}"
data = {"messages": messages, "user_id": user_id}
response = requests.post(url, json=data)
if response.status_code == 200:
resp = response.json()
return resp["result"], resp
else:
raise Exception("请求失败")
# 填入文心大模型后台的API信息
# 获取地址: https://console.bce.baidu.com/ai/?_=1711963019980#/ai/intelligentwriting/overview/index
client_id = "" # 自己的client_id
client_secret = "" # 自己的client_secret
user_id = "" # 自己的user_id
baidu_ernie = BaiduErnie(client_id, client_secret)
def chat(prompt):
messages = []
messages.append({"role": "user", "content": prompt})
result, response = baidu_ernie.chat(messages, user_id)
return result
result = chat('你是哪家公司开发的什么大语言模型?')
print(result)
# result:我是百度公司开发的知识增强语言模型,能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。
8. RAG流程封装(将提示词Prompt输入给文心大模型,获得输出结
果)
def predict(query):
docs_and_scores = vector_store.similarity_search_with_score(query, k=K)
context = ''
for doc in docs_and_scores:
context +=doc[0].page_content
context +='\n'
prompt = '你是一个学习助手,请根据下面的已知信息回答问题,你只需要回答和已知信息相关的问题,如果问题和已知信息不相关,你可以直接回答"不知道" 问题:{} 已知信息:{}'.format(query, context)
# 输入文心大模型
result = chat(prompt)
print(result)
predict('政府发布了哪些双碳政策文件')
# 根据政府发布的信息,中国提出了30·60“双碳”目标,并发布了《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《2030年前碳达峰行动方案》等纲领性文件,以保障目标的实现。中国作为全球第二大经济体,始终高度关注气候变化对国家和社会的影响。
三、推荐项目(综合级)
(1)多模态大模型(慎入,因为封闭式学习时长需要2周左右):https://aistudio.baidu.com/education/group/info/29948
(3)医学人工智能与大模型:https://aistudio.baidu.com/education/group/info/30524
(4)数字人定制(定制声音、造型,生成数字人,用于语音识别 & 聊天 & 翻译):https://aistudio.baidu.com/projectdetail/6998882?channelType=0&channel=0
CSDN独家福利
最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走: