目标状态估计与滤波

来源:https://www.worthpen.top/blog?id=656617546aa58e39d9301948

1 递推估计算法

1.1 RLS(递推最小二乘)估计

通过测量不同时间上的量测值,得到想要估计的参数。实际上并不是预测。因为估计目标状态不变。
与kalman滤波的区别:
kalman滤波使用的不是最小二乘估计,而是BLUE估计。
kalman滤波存在状态转移的过程,而RLS不存在状态转移的过程。
相当于kalman滤波的简化版。

1.2 LMS(最小均方)估计

也是基于误差均方值最小估计,只不过求均方值最小的方式运用了梯度下降法,和LS的区别在于不用矩阵求逆等步骤。
与kalman滤波的区别和RLS相同,即不存在转移过程,属于固定状态多次测量的估计问题。

1.3 维纳滤波

假设知道系统的冲激响应,然后利用最小均方误差,求得冲激响应的值。维纳滤波更恰当地应该叫做维纳估计(与BLUE估计类似),只是其估计函数只有系数,而无偏移,导致该估计方法精度不足。

1.4 基本kalman滤波。

提前知道分布是高斯分布,使用了最小后验期望估计。当未知分布时,使用了BLUE估计。两者结果相同。
使用投影定理来推导kalman滤波:投影定理的含义是随机变量的最小方差估计就是随机变量在观测上的投影。协方差阵越大,量测占的比重越大,协方差阵越小,量测占的比重越小。
估计思路:可以通过衡量量测和预测的差值,得到量测是否准确,如果差值较大,则可以通过增加响应权重,进行补偿。量测和预测的差值进行缩放到预测的协方差尺度上,进行补偿。

1.5 信息滤波器

本质上也是kalman滤波器,信息滤波器时kalman滤波器的另一种形式,在某种情况时简化kalman滤波器计算。

1.6 扩展kalman滤波

对非线性系统线性化的kalman滤波器。因为非线性系统,求协方差时,不能提出状态转移矩阵。但是,扩展kalman滤波在进行预测与滤波时,并没有使用最优估计。因此,精度可能受到影响。

1.7 无迹kalman滤波

其无迹变换需要高斯分布。

1.8 bayes滤波

通过计算概率密度函数来实现的。预先知道初始概率密度(递推需要状态的量测条件概率密度,可以根据初始概率密度递推得到)。然后递推。

1.9 无迹卡尔曼滤波和粒子滤波的区别

无迹卡尔曼滤波是基于高斯假设,因为无迹变换只针对高斯量才能保持均值和方差的不变特性。粒子滤波没有这种要求,因为粒子滤波采用了蒙特卡洛采样,而sigma点集是根据均值和方差取得值。

2 初值问题

相同的量测序列、不同初始值情况下,估计会快速收敛到同一值。所以初值可以任意设置。但是估计误差协方差一般不为0,因为任意设置总有误差且为0时会导致当前时刻的量测无效。

3 信息融合

3.1 基本概念

3.1.1 信息融合中的多层次

信息融合中最重要的一个问题就是数据的表示,这是信息的一种组织与表现形式,不同的表示包含着不同的信息量。人类在认知事物的过程中也是在一定的信息粒度层次上进行的,例如视觉感知的最前端是感受野细胞对图像数据的采集,这是最细粒度的像素数据,通过视觉神经的信息处理,提取到事物的轮廓和边缘等局部特征,最终生成一个语义映像。人类能快速并长时间记住一张人脸是因为人类对图像的记忆是对高级语义映像的存储,能够在高层次和粗粒度上快速调取语义映像,但是无法精确地构建出一张完整的人脸,因为信息粒度的上升过程伴随着局部细节信息的缺失,一张语义脸可能对应千万张真实脸,一根头发丝的变动都会导致底层数据的变化,但是细节信息的变化却不会影响上层粒度的知识,因此粗粒度的信息具有更强的鲁棒性。
信息融合的结构按信息表征方式可分为数据层、特征层和决策层融合。数据层也称为像素层,是感知层对原始数据的采集和处理层,是前端传感器对环境的感知将物理参数转换为电信号并经过量化和编码的数字信息,这个过程伴随着大量的随机噪声,来源于物理环境的复杂变化和设备本身的局限性。数据层数据融合是系统将感知层的数据进行综合以得到不确定性更小的感知数据,然后在综合后的感知数据中提取更高级的特征信息。特征层数据融合是对感知数据进行特征提取之后再综合处理的过程,特征是描述目标的抽象属性,如在雷达传感器关于目标的运动时间序列中提取目标的速度特征,红外传感器在目标的像素数据中提取形状大小特征。决策层数据融合是在各个观测器得到各自的决策结果的前提下,将多个决策结果进行综合处理与最终决策的过程,决策层具有多种表示,如概率分布对备选方案赋予可能性分配,模糊集对目标的类别归属赋予隶属度等。

3.1.2 信息融合的时空配准和数据关联问题

3.1.2.1 时间同步

消除两个传感器之间的时间延迟。

3.1.2.2 空间配准

估计传感器的固有偏差。
滤波算法是让同一个点A周围的量测更靠近该点A。而存在固有偏差时,点A和所有的围绕点A的量测都将产生偏移,使得最后滤波的结果靠近偏移后的点A。当两个具有固定偏差的传感器进行滤波时,由于滤波算法相当于同一个点产生的量测靠近该点且具有固定偏差的传感器产生的两侧实际上是围绕两个点分布,滤波是不能对这种分布进行估计的,即使强行进行滤波,其靠近的中心也不是真实点,而是两个点的平均集合中心(当两个传感器固有偏差完全一样时,可能正好拟合在真实点上)。
通过不同传感器针对同一个点由于固有偏差产生的带有偏差的估计之间的距离,不需要知道真实点的位置,就可以得到固有偏差,实现空间配准。

3.1.2.3 数据关联

将描述同一目标的数据进行关联,将描述不同目标的近似数据分开。

3.2 智能计算与识别理论基础

  1. 粗糙集理论是为了分析数据隶属和决策的关系。
  2. 证据理论是为了分析假设的信任程度。首先确定mass函数,之后利用mass函数计算假设的权重,根据权重计算信任测度,得到最后的结论。

3.3 数据融合

3.3.1 集中式量测融合

(1) 并行滤波:所有量测组成一个矩阵,同时进行估计
(2) 贯序滤波:首先使用第一个量测得到估计值,将得到的估计值当作一步预测,使用第二个量测得到最新估计值,直到所有量测使用完毕。
(3) 数据压缩滤波:将所有的量测压缩成为一个量测,比如使用最小二乘估计。

3.3.2 集中式估计融合

(1) 凸组合算法:把两个传感器的值看作先验和量测,利用BLUE准则估计进行融合。假设估计不相关。
(2) Bar SC融合算法:考虑传感器估计误差存在相关性情况下的凸组合算法。该算法和凸组合算法只是ML准则下最优。
(3) 不带反馈的最优分布式估计融合:是根据集中式融合的并行滤波进行推导,需要的量是局部估计的一步预测和更新。与凸组合算法相比,得到了局部估计的预测,因此可以不借助传感器估计之间的协方差得到最优估计(比Bar SC算法精度高,因为得到乐全局先验信息,貌似是bayes最优,书上没说)。
(4) 带反馈的最优分布式估计融合:最优性并没有改善,改善了局部估计的协方差。
(5) 最大后验概率状态估计:与Bar SC类似,个人认为和Bar SC一样。不过可能这种方法考虑了局部航迹与融合中心航迹的融合,而Bar SC只是两个局部航迹融合。存在反馈的条件下,得到的精度和最优分布式融合相同。
(6) 信息去相关:当两个估计融合时,且两者相关时,去除相关的量。主要用于传感器航迹和系统航迹融合。
(7) 等价量测:和信息去相关相同,但是是通过减去传感器航迹的当前估计和先前的估计实现去相关。
(8) 重新启动局部滤波器:在与系统航迹融合完毕后,抛弃局部滤波器的值,重新启动局部滤波器,然后和系统航迹融合,就消除了传感器航迹和系统航迹的相关性。
(9) 全局重新启动:与重启局部滤波器相同,通过重启中心滤波器实现。
(10) 协方差交叉法:是通过放缩协方差,使得与不相关时情况相同,就可使用不相关的公式得到融合结果。但是该方法本质上是得到两个估计量的共同区域,不一定是真正的估计结果,因此,精度可能会下降。
(11) 联邦滤波器:该滤波器运用了矩阵理论得到矩阵的上界,通过放大协方差的方法,消除了相关性。同时,该滤波器还有重置过程(通过反馈和信息分配),信息分配是为了实现信息的不重复使用,扩大误差。但是,信息分配之后又有了相关性,因此需要放大协方差消除相关性来配合。至于消除相关性的原因,推测可能是,协方差可以任意放大,但是放大的同时,需要找到放大的最小倍数,同时保证此时可以使相关性为0。
(12) 最优线性估计融合:这节的目的是在于使用非kalman滤波体系下的信息融合,采用准则是BLUE(kalman滤波器也采用该准则,但是此处并非使用kalman滤波器实现)和最小二乘准则。

3.3.3 分布式融合

(1) 一致性方法
通过多次迭代得到全局一致量测,优点为精确度高,缺点为需要多次通信。
(2) 扩散方法
采用了估计融合的方案,将邻接节点估计信息融合并传播。

3.5 数据关联

  1. 最近邻法。选择最接近目标预测位置的量测作为目标量测。
  2. 概率数据关联(PDA)。通过贝叶斯公式得到量测与单目标的概率。
  3. 交互式多模型概率数据关联。通过贝叶斯公式得到每个模型下的量测与单目标的概率,然后多模型进行交互,得到最终的估计结果。
  4. 联合概率数据关联。通过假设不同的方案,得到每个量测与多目标关联的概率,综合计算得到估计结果。多传感器联合概率数据关联。将联合概率数据关联扩展到多传感器情况下,多传感器等于多个单传感器概率的乘积。
  5. 多假设方法
    从其与PDA方法的区别方面来说,PDA是仅假设当前时间的可能方案,多假设方法是假设由上一时刻的方案可能产生的新方案。
  6. 概率多假设方法是根据EM算法,假设知道分配信息的情况下的似然函数,来得到最大似然状态估计。
  7. 广义S维分配算法,是以分配关系为条件,以最大似然的对数比为代价,得到代价最小的分配关系。
  8. 跟踪起始方法中的序列概率比检验和贝叶斯轨迹确定方法,均是判断是否有目标。还需要进行数据关联。
  9. 跟踪起始方法中的启发式算法和基于逻辑规则的方法,是判断多个时间的量测序列是否满足生成航迹的条件,暗含数据关联步骤,直接进行滤波计算即可。
  10. Hough变换同样暗含数据关联步骤。

3.6 异步融合

  1. OOSM的Bl算法。需要用迭代推测,以满足实时性,否则接收到数据再积分得噪声的时效性差。

3.7 学术大佬

  1. Bar-Shalom Y 信息融合理论的开先河者,美国康涅狄格大学国际著名系统科学家,IEEE院士
  2. Ronald Mahler 2003年发表应用于多目标跟踪的PHD,对这个领域相当震撼。完全颠覆了传统需要数据关联(如NN,MHT,JPDA等)这一难点的多目标跟踪方法。
  3. Bar-Shalom Y,R.Singer,Moose R L,W.D.Blair,D.B Reid,H.A.P Blom,S.S.Blackman,C.YChong为代表的科学家在机动目标跟踪和数据关联方面做出了杰出的贡献,提出了许多经典算法。
  4. 雷达方向的信息融合,国外比较好的有三大阵营,美国的康奈尔,澳洲的墨尔本,还有德国的一个工作室。
  5. 随机有限集做得最好的应该是澳洲的Ba-Ngu Vo教授。

3.8 该方向的期刊

  1. International Conference on Information Fusion
  2. Information Fusion

3.9 个人看法

传统的信息融合需要首先对信息进行配准。而信息融合在深度学习背景下,实质上就是通过不同阶段的不同信息之间的抑制或增强得到最终的判断(分类,分割等任务)。因此,在深度学习背景下,信息融合就是架构设计,而架构设计可以很好的被NAS替代。需要注意的是,分割任务下,信息融合不可以取局部融合,因为尚未配准,因此,这种条件下在更高层进行融合会有更好的效果。
综上,不需要对信息融合进行研究,而需要对NAS进行研究。

3.10 需要解决的问题

(1) 思考如何实现非重复计算系统噪声
(2) 异构传感器的网络问题
(3) 任意图(非强连通图、可带环)的平均一致性问题
一致性原理可以应对有环图,但需要强连通图,否则会导致无法发出信息的节点被信息发出者完全同化。
扩散原理可以应对无环图和非强连通图,但是不能有环,有环会导致重复扩散。
最佳的应该是可以用于可有环、非强连通图。
(4) 一致性分布式融合如何实现有权值或者置信度的融合,而不是完全平均,完全平均可能导致未观察到目标的传感器贡献大量误差

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoilingHotPot

听说打赏我的人,都发顶会顶刊了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值