Q1:如何基于K-fold衡量模型的性能?
A1:
以简单的二分类问题为例,将完整的数据集划分为K组,每次选取其中的K-1组训练,训练出K个模型,再在剩下的1组中进行评估,得到这K个模型的分类性能(准确率、召回率等等),之后,将全部K个模型的分类性能取平均,即可以得到该模型在该数据集上解决该问题的性能。
Q2:我该如何选取最终的模型?
A2:
参照网址中的回答:
Now, say we have two models, say a linear regression model and a neural network. How can we say which model is better? We can do K-fold cross-validation and see which one proves better at predicting the test set points. But once we have used cross-validation to select the better performing model, we train that model (whether it be the linear regression or the neural network) on all the data. We don’t use the actual model instances we trained during cross-validation for our final predictive model.
K-fold交叉验证只是为了评估某个模型在某个问题上的性能,了解其解决问题的能力,因此,当我们用K-fold得到表现最好的模型之后,我们就应该在完整的数据上训练该模型。而不是将交叉验证时训练的实际模型实例用于最终的预测。