视觉SLAM十四讲之对极几何笔记

https://www.guyuehome.com/7832
相机成像过程
p = K P p = KP p=KP
p是图像的像素点坐标,K是相机的内参矩阵,P是相机坐标系下的三维坐标。

将世界坐标系转化成像素坐标系的公式如下:
P u v = K T P w P_{uv}=KTP_w Puv=KTPw
其中, T ∗ P w T*P_w TPw就是将世界坐标系下的一个点 P P P从世界坐标系转化成相机坐标系,T是外参矩阵。求得再与内参矩阵K相乘,获得的就是像素坐标系。

先来说 三个坐标系,分别是世界坐标系,相机坐标系,和图像坐标系。
在这里插入图片描述如果说是四个坐标系,那么就需要再加上像素坐标系
在这里插入图片描述
相机中有四个坐标系,分别为world,camera,image,pixel

  • world为世界坐标系,可以任意指定xw轴和yw​轴,为上图P点所在坐标系。
  • camera为相机坐标系,原点位于小孔,z轴与光轴重合,xw​轴和yw​轴平行投影面,为上图坐标系XcYcZc。
  • image为图像坐标系,原点位于光轴和投影面的交点,xw轴和yw​轴平行投影面,为上图坐标系XYZ。
  • pixel为像素坐标系,从小孔向投影面方向看,投影面的左上角为原点,uv轴和投影面两边重合,该坐标系与图像坐标系处在同一平面,但原点不同。当我们看到 u , v u,v u,v的时候,就认为该点是在像素坐标系下进行的。

世界坐标系下的点是三维点,相机坐标系和图像坐标系都是二维点。内参矩阵就是关于焦距和x,y坐标的偏移矩阵,其中, f x , f y f_x,f_y fx,fy的由来如下所示:
在这里插入图片描述

其中,u,v是像素坐标。

下式为像素坐标pixel与世界坐标world的变换公式,右侧第一个矩阵为相机内参数矩阵,第二个矩阵为相机外参数矩阵。
在这里插入图片描述

在这里插入图片描述

其中 x 1 , x 2 x_1,x_2 x1,x2为归一化坐标,也就是由 x , y , z x,y,z x,y,z三个点构成的三维坐标,其中第三维是归一化之后是1,可参考下面。
在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值