7.3 2D-2D:对极几何
对极约束
-
上一节程序中提取了两张图片的特征点,并且进行了匹配。本节需要利用匹配好的特征点。
-

-
术语:
极平面:O1 ,O2,P
极点:e1,e2
基线:O1,O2
极线:l1,l2 -
理解:
O1 O2为相机中心,他们前面的矩形框是成像平面。
具体参考第五讲。已经经过归一化。

在第一帧的坐标系下,P空间位置为:[X,Y,Z]^T -
第五讲中:式5.7说明了像素坐标 (u,v)与真实坐标之间的关系,式中Z可以去掉。最终公式为5.9
-


T为转移矩阵,

“当我们写 T a 时,使用的是齐次坐标(不然没法计算)。
而写 Ra 时,使用的是非齐次坐标。
如果写在一个等式中,我们就假设齐次坐标到普通坐标的转换,
是已经做好了的——因为齐次坐标和非齐次坐标之间的转换事实上非常容易。”
对极约束条件:


对极约束意义:O1 O2 P三点共面
根据书中公式,K^ -T 等价于 ( K^ -1 )^T
本质矩阵E
-
八点法
– 根据八点法可以解出本质矩阵E。就是找8个点代入方程。 -
根据已经估得的本质矩阵 E,恢复出相机的运动 R; t。
– 公式

矩阵分析里面的内容。解出四个解。将任意一点带入解中,确定哪个正确。 -
调整E,使其满足E的内在性质。
单应矩阵H
- “单应矩阵通常描述处于共同平面上的一些点,在两张图像之间的变换关系。”
- 理解单应矩阵:
–
展开得:

本节讨论如何利用匹配的特征点进行对极几何分析,以求解相机的运动参数。通过对极约束的理解,结合第八点法求解本质矩阵E,并从中恢复旋转矩阵R和平移向量t。最后,介绍了单应矩阵H在描述图像间点变换中的作用。
2810

被折叠的 条评论
为什么被折叠?



