迁移学习中的zero-shot one-shot few-shot

零样本学习允许模型从未见过的类别中学习特征;一样本学习则在少量样本中建立泛化映射;而少样本学习是介于两者之间,关注如何从有限样本中高效学习。这些技术挑战了传统机器学习的界限,旨在提升模型在新环境中的适应能力。
摘要由CSDN通过智能技术生成

Zero-shot Learning

训练集中没有某个类别的样本,但是如果我们可以学到一个牛逼的映射,这个映射好到我们即使在训练的时候没看到这个类,但是我们在遇到的时候依然能通过这个映射得到这个新类的特征。即: 对于 训练集 中 没有出现过 的 类别,模型能自动创造出相应的映射: XX -> YY。

 

One-shot Learning

训练集中,每个类别 都有样本,但都只是 少量样本(只有一个或几个) 。此时,我们可以在一个更大的数据集上或者利用knowledge graph、domain-knowledge 等方法,学到一个一般化的映射,然后再到小数据集上进行更新升级映射。

 

Few-shot Learning

等同于 一次学习One-shot Learning 。关键就在于如何学到一个好的映射,能应用到没有看到的问题上。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值