控制系统数学模型

本文介绍了闭环控制系统的关键概念,包括开环和闭环传递函数,以及它们在有给定输入r(t)和干扰n(t)下的表现。特征方程的极点对系统稳定性至关重要。文章还讨论了误差传递函数和系统的动态响应特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来自百度自动控制原理 (jlu.edu.cn)

 

 

2.4 控制系统结构图与信号流图

 

三、闭环控制系统的传递函数

控制系统会受到两类输入信号的影响。一类是有用信号,或称为输入信号、给定值、参考输入等,常用r(t)表示;另一类则是扰动,或称为干扰,常用n(t)表示。一个闭环控制系统的典型结构可用图2-42表示。

时延对控制系统的影响是非常复杂的,需要从多个角度进行分析。下面我将就常规控制下,时延对闭环系统特征方程的特点、时延对闭环极点的影响以及时延对频率特性的影响进行分析。 1. 时延对闭环系统特征方程的特点的影响 在常规控制下,闭环系统的特征方程为: $1 + G(s)H(s) = 0$ 其中,$G(s)$为开环传递函数,$H(s)$为控制器传递函数。时延对特征方程的影响可以通过引入一个复频变量$s'=s+j\omega$来分析: $1 + G(s')H(s')e^{-j\omega\tau} = 0$ 其中,$\tau$为时延。可以看出,在时延存在的情况下,闭环系统的特征方程变成了一个时变的复数方程。这意味着,除了极点和零点以外,还会有一些新的特征出现,例如相位交错点等。 2. 时延对闭环极点的影响 在时延存在的情况下,闭环系统的极点位置会发生变化。具体来说,对于一个传递函数$G(s)$,它的极点为$p_i$,则在时延为$\tau$的情况下,它的新极点位置为: $p_i'=p_ie^{-\frac{p_i\tau}{\sqrt{1-p_i^2\tau^2}}}$ 可以看到,时延会导致极点位置发生偏移,并且偏移量与极点位置本身以及时延大小有关。 3. 时延对频率特性的影响 在时延存在的情况下,控制系统的频率特性也会发生变化。具体来说,时延会导致相位角随频率发生变化,从而影响系统的稳定性和性能。通常来说,时延越大,相位角随频率变化的范围就越大,从而对系统的稳定性和性能产生越大的影响。 总之,时延对控制系统的影响是非常复杂的,需要从多个角度进行分析。以上只是对时延对闭环系统特征方程的特点、时延对闭环极点的影响以及时延对频率特性的影响进行了简单的分析。在实际应用中,还需要具体问题具体分析,采取相应的控制策略来解决时延对系统的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值