时间序列分析part2时间序列与其滞后项的协方差

自回归函数(Autoregressive function)是用于分析时间序列数据的重要工具,它考虑了数据之间的滞后相关性。通过引入协方差和偏自相关系数函数(PACF),可以剥离历史值对当前值的影响,从而更深入地理解数据动态。这种分析方法广泛应用于金融、经济、气象等领域,用于预测和建模具有内在相关性的序列变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自回归函数(Autoregressive function)
x→随机变量,E→数学期望,μ→均值,有
在这里插入图片描述
(注意,滞后k项)

引入协方差
在这里插入图片描述
Autoregressive correlation coefficient function(自回归相关系数函数)

时间数据是相关性很紧密的,比如今天的你必定由以前的你发展而来,那么我们如果只要研究今天的你变化的部分就必须要剔除从前的你对你的影响

于是,我们就要引入新的概念,PACF(Partial autocorrelation coefficient function)/偏自相关系数函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
附录:
协方差公式:
在这里插入图片描述
标准差公式:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值