大模型面经——MoE混合专家模型总结

面试总结专栏

本篇将介绍MoE(Mixture of Experts,混合专家模型)相关面试题。

以下是一个快捷目录:

一、MoE介绍

二、MoE出现的背景

三、有哪些MoE模型

四、介绍稀疏 MoE 层

五、介绍门控网络或路由

六、为什么门控网络要引入噪声呢

七、如何均衡专家间的负载

八、“专家”指什么

九、专家的数量对预训练有何影响?

十、什么是topK门控

十一、MoE模型的主要特点

十二、MoE和稠密模型的对比

十三、MoE的优势

十四、MoE的挑战

十五、微调MoE的方法

十六、MoE的并行计算

回答

一、MoE介绍

“Mixture of Experts”(MoE)是一种机器学习模型,特别是在深度学习领域中,它属于集成学习的一种形式。MoE模型由多个专家(experts)和一个门控网络(gating network)组成。每个专家负责处理输入数据的不同部分或不同特征,而门控网络则负责决定每个输入应该由哪个专家来处理。

例如,在下图中,“More”这个 token 被发送到第二个专家,而“Parameters”这个 token 被发送到第一个专家。

二、MoE出现的背景

本质上来说就是一种高效的 scaling 技术,用较少的 compute 实现更大的模型规模,从而获得更好的性能。

三、有哪些MoE模型

Switch Transformers、Mixtral、GShard、DBRX、Jamba DeepSeekMoE 等等。

以Mixtral为例

Mixtral 是一个稀疏的专家混合网络。它是一个decoder-only的模型,其中前馈块从一组 8 个不同的参数组中选择。在每一层,对于每个令牌,路由器网络选择其中两个组(“专家”)来处理令牌并附加地组合他们的输出。

混合专家层

混合专家层

这种技术在控制成本和延迟的同时增加了模型的参数数量,因为模型只使用每个令牌总参数集的一小部分。具体来说,Mixtral 总共有 46.7B 个参数,但每个令牌只使用 12.9B 个参数。因此,它以与 12.9B 型号相同的速度和相同的成本处理输入和生成输出。

Mixtral 基于从开放 Web 中提取的数据进行预训练——同时培训专家和路由器。

四、介绍稀疏 MoE 层

稀疏 MoE 层一般用来替代传统 Transformer 模型中的前馈网络 (FFN) 层。MoE 层包含若干“专家”(例如 8 个),每个专家本身是一个独立的神经网络。在实际应用中,这些专家通常是前馈网络 (FFN),但它们也可以是更复杂的网络结构,甚至可以是 MoE 层本身,从而形成层级式的 MoE 结构。

五、介绍门控网络或路由

门控网络接收输入数据并执行一系列学习的非线性变换。这一过程产生了一组权重,这些权重表示了每个专家对当前输入的贡献程度。通常,这些权重经过softmax等函数的处理,以确保它们相加为1,形成了一个概率分布。这样的分布表示了在给定输入情境下每个专家被激活的概率。一个典型的门控函数通常是一个带有 softmax 函数的简单的网络。

六、为什么门控网络要引入噪声呢

为了专家间的负载均衡。也即防止一句话中的大部分token都只有一个专家来处理,剩下的七个专家(假设一共八个专家)“无所事事”。

七、如何均衡专家间的负载

引入噪声、引入辅助损失(鼓励给予所有专家相同的重要性)、引入随机路由、设置一个专家能处理的token数量上限

八、“专家”指什么

一个“专家”通常是前馈网络 (FFN)。数据经过门控网络选择后进入每个专家模型,每个专家根据其设计和参数对输入进行处理。每个专家产生的输出是对输入数据的一种表示,这些表示将在后续的步骤中进行加权聚合。或者通过单个专家模型进行处理。

九、专家的数量对预训练有何影响?

增加更多专家可以提升处理样本的效率和加速模型的运算速度,但这些优势随着专家数量的增加而递减 (尤其是当专家数量达到 256 或 512 之后更为明显)。同时,这也意味着在推理过程中,需要更多的显存来加载整个模型。值得注意的是,Switch Transformers 的研究表明,其在大规模模型中的特性在小规模模型下也同样适用,即便是每层仅包含 2、4 或 8 个专家。

十、什么是topK门控

选择前k个专家。为什么不仅选择最顶尖的专家呢?最初的假设是,需要将输入路由到不止一个专家,以便门控学会如何进行有效的路由选择,因此至少需要选择两个专家。

十一、MoE模型的主要特点:

  • 灵活性:每个专家可以是不同类型的模型,例如全连接层、卷积层或者递归神经网络。

  • 可扩展性:通过增加专家的数量,模型可以处理更复杂的任务。

  • 并行处理:不同的专家可以并行处理数据,这有助于提高模型的计算效率。

  • 动态权重分配:门控网络根据输入数据的特点动态地为每个专家分配权重,这样模型可以更加灵活地适应不同的数据。

  • 容错性:即使某些专家表现不佳,其他专家的表现也可以弥补,从而提高整体模型的鲁棒性。

十二、moe和稠密模型的对比

1、预训练

相同计算资源,MoE 模型理论上可以比密集模型更快达到相同的性能水平。

2、推理

moe:高显存,高吞吐量;

稠密模型:低显存,低吞吐量

十三、moe的优势

1、训练优势:预训练速度更快;

2、推理优势:推理速度更快

十四、moe的挑战

1、训练挑战:微调阶段,泛化能力不足,容易过拟合

2、推理挑战:对显存的要求更高

十五、微调moe的方法

1、冻结所有非专家层的权重,专门只训练专家层

2、只冻结moe层参数,训练其它层的参数

十六、moe的并行计算

图片来源:b站 算法猪立业

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值