一文讲清楚关于智能体之间的协作方式-A2A协议

1、A2A介绍

A2A,也就是Agent to Agent协议,是由Google推出的开源协议,旨在实现AI智能体之间的通信互操作性,通过为智能体提供标准化的协作方式,无论其底层框架或供应商如何,该协议使AI智能体能够安全地交换信息、协调行动,并跨各种企业平台和应用程序工作。

img

例如,在实际应用中,A2A使智能体能够在类似招聘候选人这样地复杂任务上连接和写作,用户可以要求其智能体查找匹配职位列表的候选人,该智能体通过A2A与其他专业智能体交互,以寻找潜在的候选人、安排面试并进行背景调查-所有这些都在统一的界面中完成。

2、A2A应用场景

企业自动化

在企业环境中,A2A使智能体能够跨鼓励的数据系统和应用程序工作。例如,供应链规划智能体可以用于库存管理、物流和采购智能体协调,即使他们由不同的供应商在不同的框架中构建。这增加了自主性并提高了生产力,同时降低了长期成本。

多智能体协作

A2A协议实现了真正的多智能体场景,智能体可以在其自然、非结构化的模式中协作,即使他们不共享内存、工具和上下文。这超越了简单地将一个智能体用作另一个智能体的“工具”,它允许每个智能体在处理复杂任务时保持自己的能力。

跨平台集成

对于商业应用,A2A允许AI智能体跨整个企业应用程序生态工作。这意味着智能体可以访问和协调各种平台的其他智能体,如CRM系统、知识库、项目管理工具等。跨多样化平台和云环境管理智能体的标准化方法对于实现协作AI的潜力至关重要。

3、A2A的关键功能

能力发现

智能体可以使用JSON格式的“智能体卡”(Agent Card)来描述它的能力。这使得客户端智能体能够识别最适合执行任务的智能体,并利用A2A与远程智能体通信。例如,客户端智能体可能发现另一个智能体专门处理财务数据,并将财务分析任务委托给它。这个类似全球供应链选择,你在做产品时由于某项技术或部件自己无法实现,就要网络上寻找能够提供对应能力的供应商,而供应商也会发布自己的一些相关信息在网上,供客户来查找。

任务管理

客户端和远程智能体之间的通信以任务完成为导向,智能体共同工作以满足用户请求。这个“任务”对象由协议定义,具有生命周期。它可以立即完成,或者对于长时间运行的任务,每个智能体可以相互通信以保持同步。可以理解为一项工程具有项目经理,项目经理寻找对应的合作厂商,而寻找合作厂商的目的就是为了完成这项工厂任务,每个厂商的进度都有可能影响最后任务的完成时间,所以需要项目经理保证与各厂商之间的通信畅通。

协作

智能体可以相互发送消息,传达上下文、回复、制品或用户指令。这为智能体创建了一种结构化的方式,以共享完成任务所需要的信息。例如,一个智能体可能提供关于用户偏好的上下文,而另一个智能体可能返回分析结果。

用户体验协商

每条消息都包含“部分”(parts),这是一个完整形成的内容片段,如生成的文本或图像。每个部分都有制定的内容类型,允许客户端和远程智能体协商所需的正确格式,并明确包含对用户UI功能的协商,如iframe、视频、Web表单等。我们大多数人了解的AI就是对话,最普遍的形式就是文本消息,但是因为智能体可以做很多事情,分析报表、填写表单、录制视频、打开网站等工作,所以智能体之间的通信内容也会有很多种形式,这要求用户体验设计上要考虑到各个智能体所提供的回复形式。

4、A2A设计原则

A2A设计遵循五个关键原则:

  1. 拥抱智能体能力:A2A专注于时代里能够在其自然、非结构化的模式中协作,即使它们不共享内存、工具和上下文。

  2. 基于现有标准构建:该协议建立在现有流行标准,包括HTTP、SSE、JSON-RPC,这意味着它更容易与企业已经每天使用的现有IT栈集成。

  3. 默认安全:A2A旨在支持企业级身份验证和授权,在启动时与OpenAPI的身份验证方案保持一致。

  4. 支持长时间运行的任务:A2A灵活且支持各种场景,从快速任务到可能需要数小时甚至数天的深度任务。在此过程中,A2A可以向用户提供实施反馈、通知和状态更新。

  5. 模态无关:智能体世界不局限于文本,这就是为什么A2A支持各种模态,包括音频和视频流。

5、A2A的优势

统一智能体通信

A2A提供了智能体协作的标准化方式,消除了不同智能体框架之间定制集成代码的需求。这显著减少了开发工作,并实现了在不同平台上构建的智能体之间的无缝通信。

企业级安全

该协议设计以安全作为基本原则,支持企业级身份验证和授权。这确保智能体通信维持业务应用程序所需的安全标准。

大规模互操作性

A2A使真正的多智能体生态系统能够出现,专业智能体可以共同解决复杂问题。这种互操作性使企业能够利用特定任务的最佳智能体,无论他们来自哪个供应商或框架。

面向未来的设计

通过建立在现有标准之上并支持各种模态,A2A设计用于随着AI格局的发展而成长。该协议可以支持新兴的智能体能力和交互模型。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值