#CKF算法实现
1.容积规则实现复杂积分
注: **The points and weights ** of the cubature rule are independent with the integrand f ( x ) f(x) f(x).
所以,容积规则的点和权重可以脱机计算并预先存储以加快计算速度。
1.1 确定容积点和权重
Consider a multi-dimension weighted integral of the form
I ( f ) = ∫ D f ( x ) ω ( x ) d x I(f)=\int_Df(x)\omega(x)dx I(f)=∫Df(x)ω(x)dx
The basic task of numerically computing I ( f ) I(f) I(f) is to find a set of points x i x_i xi and weights ω i \omega_i ωi that approximates I ( f ) I(f) I(f) by a weighted sum of function evalutions .
I ( f ) ≈ ∑ i = 1 m ω i f ( x i ) I(f)\approx \sum^m_{i=1}\omega_if(x_i) I(f)≈i=1∑mωif(xi)
变量 x x x是服从高斯分布的, f f f是任意非线性函数。
An efficient non-product third-degree fully symmetric cubature rule is proposed to find { x i , ω i } \{x_i,\omega_i\} {
xi,ωi} for **Gaussian weighted integrals. **
∫ R n f ( x ) N ( x ; μ , Σ ) d x = 1 π n ∫ R n f ( 2 Σ x + μ ) e − x T x d x \int_{R^n}f(x)N(x;\mu,\Sigma)dx = \frac{1}{\sqrt{\pi^n}} \int_{R^n}f(\sqrt{2\Sigma}x+\mu)e^{-x^Tx}dx