特斯拉FSD V12正式推送!端到端表现如何?

作者 | 有据无车  编辑 | 智能车参考

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

本文只做学术分享,如有侵权,联系删文

特斯拉FSD V12,普通车主也能用了。

特斯拉FSD V12在美推送,不只是特斯拉内部员工,普通车主也有机会体验端到端自动驾驶了,告别传统的规则驱动,驾驶决策交由AI算法生成

尽管FSD V12的更新称得上是“飞跃”,然而实测视频,仍带有Beta后缀的Version 12还称不上是“终极答案”

特斯拉FSD V12在美推送

FSD V12 Beta在美推送,不依赖激光雷达,数据驱动AI算法,媒体演示视频可应对大多场景。

雨夜无保护上坡后左转:

a2bce0118170ad814b86439d1a31acad.gif

等待小朋友过完马路再走:

726bf56a100424ba1d7cf6db38c1d86f.gif

马路靠边侧方停车:

e1dfceda6b4abdfd4b50be5bed2b8bc8.gif

避让前方车辆突然刹停:

308d64733b7c28c72f5db694bcea05a0.gif

总体来看,纯视觉的FSD V12 Beta的能力得到很大提升,针对不规则障碍物等的识别很准确,一些细节也还原的很好。

程序兼容性也提高,这次不仅推送给了原来的HW3.0硬件方案,HW4.0也收到了推送。

但是仍然存在不足,比如不依赖激光雷达,目前纯视觉方案在恶劣天气下的表现不够好。

首批测试的博主称,在大雨天气下测试FSD V12 Beta多次出现接管。

e269479b5cdb48953157e1d556445e80.png

这也和大约一个月前马斯克给网友的回复吻合,当时网友在社交平台上催更马斯克,马斯克回应称FSD V12程序在加州表现还不错,但还需要多在雨水多的地区训练

ac031179ddd38576a40c17c159752937.jpeg

所以目前推送的v12.1.2版本显然能力还不够完善。发布测试视频的博主随后也表示:

FSD Beta v12.1.2(最新版本号)并不能实现自动驾驶。

fb866bd986d2b29f24aa7ec0b65b46b0.png

这可能就是为什么推送的FSD V12依然带有Beta(测试版)后缀,此前马斯克曾公开表示,FSD V12不会是Beta版。

3b361e3b5562cc7e45b173a0645244fc.png

以及虽然这次确实是推送给了普通车主,而不仅限于特斯拉内部员工,但推送的车主数量还比较小,特斯拉对此还比较谨慎,也许等后面全员推送,正式公测后会将“Beta”移除也说不定。

要是以目前的表现直接落地中国,怕是会让很多人告别“FSD崇拜”。

8173af41ec5c558f30002f89f55de497.gif

不过尽管存在着不足,但是FSD V12的更新仍可以称得上是飞跃,为自动驾驶发展开辟了新道路。

V12和以往FSD版本有什么不同

特斯拉在最新的OTA注解中表示,V12用海量视频数据训练出的端到端神经网络,替换掉了超过30万行C++代码

不再是规则驱动的,而是数据驱动的,这是FSD一大进化。

396092ea3b0efc274016f7f31cc483ee.png

所谓规则驱动,就是过去传统的自动驾驶程序在根据感知做出决策时,用程序设定规则,if-else的逻辑判断。

Corner Case(边缘场景)无穷无尽,很难写出一段程序覆盖尽可能多的场景,遇到特殊情况就补一段,长此以往代码的冗余和程序的复杂程度不断提高,系统最后难免被程序员封为“屎山”。

现在转向数据驱动,用大量的视频数据训练神经网络,不断完善模型趋向于人类老司机。

用一位早前参与FSD V12内测的特斯拉员工所说,过去难以优化的问题迎刃而解——(模型)模仿人类就行了。

a1c1a663967110053748d0810aee7ba4.jpeg

FSD V12也不像过去的自动驾驶还要分为三个感知、规划和控制三个模块,用一个统一体实现了端到端,这头输入周边感知到的数据,那头输出驾驶决策。

端到端的神经网络有什么好处?

从研发上来看,过去分成感知、规划和控制,最终是实现把车开好,但三个模块各自的优化目标是不同的,每个模块都会产生bug或是误差,这些误差积累下来会导致最终输出结果出问题。

就好像快过年了咱们一起包饺砸,和馅,和面,下饺子,最终目标是做好这盘饺子,但是馅、面和下饺子各自所追求的目标是不一样的,每一步都可能会出问题,导致最终饺子煮烂了。

99d792840d64baa1639c62bdd9f175e2.jpeg

从商业化落地来看,每个模块独有体系和机制,这意味着要针对每个模块投入团队和资金,却不一定能换回升级迭代效率。

而转换成端到端这种单一模型后,工程复杂度没原来高,只需要围绕一个最终目的进行优化,统一可控。模型的主干也可以共享提高计算效率。

端到端也使得纯粹依靠数据完善程序成为可能。

f38e471e2c1035434ecb917c3d7a5b88.gif

当然,新的突破带来新的问题。

过去分成多个模块,升级优化更灵活,C++程序可解释性也更好,从汇编到到编译,程序运行很清晰。

而端到端自动驾驶是个“黑盒”,解释性不太好,增加了人们对自动驾驶的信任成本。

但正如AI大牛何恺明此前在香港中文大学讲座中谈到的:

你打车遇到的司机师傅是个陌生人,为什么你会信任他?

你信任他是因为他的大脑是可解释的,还是你认为一个训练有素经验丰富的司机应该会开的很稳?

—  —

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

38cda51b06e0e5b66e4aaf31b4c93ad1.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2400人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

7b3cb38b8f786fd9fb39cd0e7dc55d30.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

00d52fb6a386173553b96fb640c95dff.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!29ede6a8172142705fa5063862260d87.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值