『BEV感知』下半场,关于自动驾驶科研&量产的一切!

今天将重点介绍关于BEV感知算法的经典研究成果——BEVFormer

研梦非凡请来了国内一线车企研究院资深算法工程师Frank导师,在3月7日晚20点与大家深入探讨自动驾驶中的视觉感知算法,系统地讲解这些算法的原理、应用和未来发展,并介绍单目相机感知算法和BEV(Bird's Eye View,鸟瞰视角)感知算法的发展历程和核心思想。

扫描二维码预约直播课

2f6c2d1f5a6e596e60831cefa1c1e611.png

再领课程ppt和30多个自动驾驶开源代码数据集

69a0bb60789a28622229ac3806c72963.png

直播课主要内容

  • 自动驾驶简介、自动驾驶的发展历程

  • 视觉感知在自动驾驶中的重要性

  • 单目相机感知算法综述

  • 单目相机的基本原理

  • 视觉SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)

  • 目标检测与跟踪

  • 单目深度估计

  • BEV感知算法综述

  • BEV视角在自动驾驶中的优势

  • BEV中的目标检测与跟踪

  • BEVFormer介绍

  • BEVFormer的背景与动机

  • BEVFormer的网络结构

  • BEVFormer的实验结果与性能评估

  • 未来展望与讨论

  • 自动驾驶视觉感知的挑战与机遇

  • 新技术与研究方向的探讨

e5c934ccab942b898cd322d618f087a2.gif

看完此次直播课,你将能够:

  1. 对自动驾驶中视觉感知算法的发展历程,主要算法核心思想和应用场景有深层次的认识;

  2. 对单目相机感知算法和BEV感知算法有系统性的认识;

  3. 掌握最新的BEVFormer算法,了解其在自动驾驶领域的应用前景。

扫描二维码预约直播课

cbfb2835591f064ee5b6c1f9c97179e0.png

再领课程ppt和30多个自动驾驶开源代码数据集

9d35ce9642c52156951e3430a633bba0.png

自动驾驶之心的粉丝如果你的研究包括以下方向/方法,或者有你感兴趣的idea,可以享受粉丝福利(1v1论文指导选题阶段学习规划部分先meeting后付款,具体活动可扫码咨询助教)。

自动驾驶研究方向

fea0b2de2bc5a3cc9b91e21f50f5600c.jpeg

自动驾驶方向科研常用方法

bf6897b1b70e15d7c38e2cbbe0158497.jpeg

自动驾驶方向现准备好的idea

addcb7eb9b3d7692e9c964badf1869b6.jpeg

你的研究方向/方法/idea可以不限以上自动驾驶方向,cv全方向/nlp全方向/机器学习/深度学习都可以来研梦非凡匹配到合适的科研指导。

粉丝福利:1v1论文指导-选题阶段-学习规划部分(先meeting后付款),具体活动可扫码咨询助教👇

a643fdb92d4e6cda9bda4f9b73284a83.png

根据自动驾驶之心粉丝的科研需求我们推出两种论文指导方案👇

1v1定制化论文指导:

  • 按不同的需求收费,区别于其他1v1论文辅导收全程指导费。

  • 针对在完成论文的过程中某些部分遇到难题,而找不到路径的同学,协助其用更少的费用快速地解决问题。

1v1定制化论文指导分三个阶段:

选题阶段

  1. 导师根据学员实际情况与需求,引导论文idea或给出论文idea

  2. 导师针对已有研究成果进行梳理和分析指导,让学员了解研究领域的发展状况、研究方法和趋势,确定论文idea的研究方法和目标。

  3. 导师结合己有研究成果的情况和论文idea,对学员后续的研究方法做出初步的规划和判断。

e1017b184428cbeec89fa0d712485dc0.jpeg

实验阶段

  1. 实验设计,明确研究问题、研究目标和研究方法

  2. 数据收集、整理与分析,确保数据的质量和完整性

  3. 实验代码实现与模型训练

  4. 实验微调与结果统计、呈现

eec60d7e458351206b3707ffad1742c4.jpeg

成稿(让写作professional)阶段

因语言问题,科研协作经验缺乏,大多数的同学会因为用词和表达不够professional而被误解,导致论文改稿和评分低。

  1. 论文写作方法指导,论文写作框架与格式

  2. 参考文献筛选与列举

  3. 期刊会议筛选与投稿建议指导

  4. 论文文字部分的修改与润色

  5. 论文中所必要的表格与图片制作

c9b29fb4baf1dff728bc2bbfdab6deaf.png

粉丝福利:1v1论文指导-选题阶段-学习规划部分(先meeting后付款),具体活动可扫码咨询助教👇

383fd832c17d6d25a090c018b0196ec7.png

1对1全程论文指导

全程论文指导的服务适合以下需求的同学

  • 非常适合科研小白:有科研需求,想融会贯通地使用算法模型,了解前沿进展和方向;

  • 非常适合转专业和研究领域做敲门砖用:从事人工智能领域工作,想系统提升算法理论,高效掌握算法设计及创新思路,快速了解论文撰写技能;

课程收获

  • 学习经典前沿论文,掌握算法原理和实现,了解不同算法的优劣势;

  • 指定领域创新点;

  • Coding能力增强;

  • 论文写作方法以及投稿建议。

科研进度保障

  • 主讲导师:顶会审稿人,负责经典论文+前沿论文讲解+idea给予/方向建议+写作方法+投稿建议

  • 私人群:每个同学都有与主讲导师私人讨论的小群(idea探讨以及课程内容答疑);

  • 全程线上语音meeting+开麦沟通。

指导周期与价格表

总指导周期=核心指导期+维护期

  • 根据需要发表论文的区位不同,指导总周期在3到18个月不等。

  • 核心指导期是正常的上课指导周期,维护期是学员已经写出论文投出去后,可能会收到审稿意见要求修改或者退稿的情况(主讲导师会给同学进一步的修改建议,必要的话会约会议沟通,最多6次meeting)。

  • 在核心指导期,一般是每周1次1对1会议指导课,每次在45分钟左右。

41df55c46fccafa0e86fc6b1611e01f2.jpeg

粉丝福利:1v1论文指导选题阶段-学习规划部分(先meeting后付款),具体活动可扫码咨询助教👇

491e71c653d27e61663ec02aeb748558.png

导师介绍

研梦非凡的导师来自海外QStop80、国内华五、C9、985高校的教授/博士导师/博士后,世界500强公司算法工程师,国内外知名人工智能实验室研究员。(以下仅展示部分导师)导师均来自科研一线,购买联系助教后,可根据学员需求匹配导师库导师~~

李导师

海外QS30大学博士后,曾在多家研究院企业担任算法研究员。只接顶会、一区、二区意向学员

个人成就:

在顶级国际会议及期刊Environment of remote sensing,AAAI,ECCV,WACV等发表论文20余篇。专利著作7部。担任CVPR,ICCV,ECCV,ACM-MM,AAAI,NIPS等审稿人。

研究/辅导方向:

计算机视觉,机器学习,多模态学习。3D视觉(3D点云和图像表示学习、3D点云和2D图像的无监督和半监督学习、人体姿态估计、重建);人脸分析(人脸关键点、重建、人脸跟踪);模型压缩 (知识蒸馏、模型搜索量化剪枝);通用视觉模型与应用(VIT、目标检测、语义分割);AI基础理论(AutoML、数据增广、无监督/半监督/长尾/噪声/联邦学习);AIGC生成模型高效训练和优化(扩散模型蒸馏、图文生成、3D生成等);多模态学习(图像、3D点云和语言的多模型学习、vision-language、医学图像);压缩感知的稀疏编码方法。

Mike导师

浙大博士,现任互联网大厂算法研究员,从事包括自动驾驶多模态感知系统,监控视频理解系统等项目。

个人成就:

在中科院一区二区等国际期刊发表论文近15篇,并担任cvpr,iccv, eccv, nips, icml, iclr等审稿人。

研究/辅导方向:

目前主要方向为深度学习视觉方向,生成模型方向(如GAN网络,diffusion,文生图等),视觉理解方向(如目标检测,分割,对比学习,模型结构设计等),多模态理解方向(如视觉和语言,声音等),3D点云,医疗图像领域,模型结构设计和计算机视觉在医疗上的应用等。

辅导亮点:

指导多名本硕学生撰写SCI 1区-4区学术论文,多名学生进入顶尖985高校、211高校双一流学科继续深造。

Bob导师

本硕博985

个人成就:

在TPAMI、TIP、CVPR、ICCV、ECCV等高水平期刊和会议上发表论文40余篇,其中CCF-A类论文20余篇,一作CCF-A类论文10余篇。

研究/辅导方向:

主要研究方向为图像复原、图像增强、神经网络轻量化、点云语义理解等。

辅导亮点:

先后指导硕士博士20余人,多名学生硕博期间发表CCF-A和CCF-B,SCI一区和SCI二区。

Wills导师

985高校通信与信息PHD

个人成就:

曾在某知名lab任研究员,多个SCI国际会议审稿人,IEEE Acecess审稿人。

研究/辅导方向:

机器人slam、无线感知、多模态融合、计算机视觉、大数据、云/雾计算、通信类、机械类。

辅导亮点:

曾辅导过数位硕士博士的毕论与本科生保研加分,对论文创新点挖掘具有丰富经验,目前已经发表数十篇SCI高水平论文。参与申请与开展国家级别课题数项(其中部分项目是实际负责人)。

李导师

BAT大厂算法专家

个人成就:

ACM multimedia oral论文一作。曾带队做过图像风格转换、图像/视频增强、人脸修复、图像/视频质量评价和自动驾驶感知数据合成等项目,对生成式模型有着丰富的实践经验。

研究/辅导方向:

主要研究方向为图像视频增强、多模态内容理解与数据合成,自动驾驶感知数据合成。

辅导亮点:

经验丰富,实力过硬,帮助50多名学员完成1v1定制化论文指导(实验阶段工作)

粉丝福利:1v1论文指导-选题阶段-导师学习规划部分(先meeting后付款),具体活动可扫码咨询助教👇

58590ad42b042db1155ed29b29d22e76.png
### BEV感知自动驾驶中的应用 #### 技术原理 BEV(鸟瞰图视角)感知算法通过将不同传感器获取的数据转换到统一的鸟瞰视图坐标系下,从而实现多源数据的有效融合[^1]。这种变换不仅限于摄像头图像,还包括激光雷达点云和其他类型的传感输入。通过对这些异构数据进行空间上的对齐和语义级别的聚合,可以构建出更加全面且精确的道路环境表示。 对于基于视觉的方法而言,通常会采用逆透视投影(Inverse Perspective Mapping, IPM)[^3]来完成二维图像向三维世界的映射;而对于LiDAR等主动式探测设备,则可以直接利用其自带的空间位置信息来进行处理。值得注意的是,虽然IPM技术已经相对成熟并被广泛应用,但它存在一些固有的缺陷——例如对外部参数敏感以及无法很好地处理非水平面物体等问题。因此,在实际部署过程中往往还需要结合其他手段加以补充和完善。 #### 实现方法 为了克服传统单目或双目相机方案中存在的诸多挑战,现代BEV感知框架倾向于集成多种不同类型的感受器,并借助深度学习模型挖掘其中蕴含的价值。具体来说: - **多模态特征提取**:针对每种特定类型的输入信号设计专门的编码网络结构,如ResNet用于RGB影像分析、PointNet负责点云分类任务等等; - **跨域一致性约束**:引入额外损失项鼓励来自不同渠道却指向同一物理实体的信息之间保持一致关系,进而增强系统的鲁棒性和泛化能力; - **时空联合建模**:考虑到交通场景具有很强的时间连续特性,故而有必要考虑如何有效地捕捉动态变化趋势。此时可选用循环神经元(RNNs),卷积长短记忆单元(C-LSTM)或者Transformer架构作为核心组件之一。 ```python import torch.nn as nn class MultiSensorFusion(nn.Module): def __init__(self): super(MultiSensorFusion, self).__init__() # Define feature extraction networks for different sensor types here def forward(self, inputs): fused_features = None # Implement fusion logic based on the extracted features from various sensors return fused_features ``` 上述代码片段展示了一个简单的多传感器融合模块定义方式,可以根据实际情况调整内部的具体组成部件及其连接模式以适应不同的应用场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值