VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶

作者 | 小白说 编辑 | 自动驾驶小白说

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心大模型技术交流群

本文只做学术分享,如有侵权,联系删文

论文:https://arxiv.org/pdf/2412.14446

0. 摘要

964303803ec804466a176ec96c954270.png

人类驾驶员依赖常识推理来应对复杂多变的真实世界场景。现有的端到端(E2E)自动驾驶(AD)模型通常被优化以模仿数据中观察到的驾驶模式,而没有捕捉到背后的推理过程。这一限制制约了它们处理具有挑战性的驾驶场景的能力。为了弥补这一差距,我们提出了VLM-AD,这是一种利用视觉-语言模型(VLMs)作为教师来增强训练的方法,通过提供额外的监督,结合非结构化推理信息和结构化动作标签。这种监督增强了模型学习更丰富的特征表示的能力,这些特征表示能够捕捉驾驶模式背后的理由。重要的是,我们的方法在推理时不需要VLM,使其适合实时部署。当与最先进的方法结合时,VLM-AD在nuScenes数据集上实现了规划精度的显著提高和碰撞率的降低。

1. 创新点

1.1 知识蒸馏与特征表示学习

VLM-AD在知识蒸馏与特征表示学习方面做出了显著的创新与贡献。通过利用视觉语言模型(VLM)作为教师模型,VLM-AD能够将VLM中蕴含的丰富推理知识和语义信息有效地传递给端到端自动驾驶模型,从而显著提升后者的特征表示能力和决策性能。

  • 知识蒸馏机制:VLM-AD采用了独特的知识蒸馏方法,将VLM生成的自由形式推理注释和结构化动作注释作为额外的监督信号,融入到端到端自动驾驶模型的训练过程中。这种蒸馏机制使得自动驾驶模型不仅能够学习到传统的轨迹监督信息,还能够吸收VLM所提供的深层次推理知识,从而更好地理解驾驶场景中的各种因素及其相互关系。例如,在nuScenes数据集上的实验表明,经过VLM-AD训练的模型在面对复杂场景时,能够更准确地识别潜在的风险和机会,做出更合理的决策,这正是知识蒸馏效果的直接体现。

  • 特征表示学习:借助VLM的指导,VLM-AD显著增强了端到端自动驾驶模型的特征表示学习能力。模型能够学习到更丰富、更细致的特征表示,这些特征不仅涵盖了视觉信息,还融合了语言知识和推理逻辑。具体来说,VLM-AD通过文本特征对齐和结构动作分类等辅助头设计,使得自动驾驶模型的内部特征表示与VLM提供的文本特征和动作标签进行有效对齐和匹配。这种对齐过程促使模型关注那些对驾驶决策至关重要的特征,从而提高了模型对驾驶环境的感知和理解能力。实验结果显示,经过VLM-AD训练的模型在特征空间中能够更清晰地区分不同的驾驶场景和动作,为准确的决策提供了坚实的基础。

1.2 实时部署的可行性

VLM-AD在保证模型性能提升的同时,充分考虑了实时部署的可行性,这是其另一大创新与贡献所在。与一些依赖大型基础模型进行实时推理的方法不同,VLM-AD巧妙地将VLM的推理过程仅限于训练阶段,而在推理阶段则完全不依赖VLM,从而显著降低了推理成本和延迟,使得模型能够满足实时自动驾驶应用的要求。

  • 推理效率优化:在VLM-AD的设计中,通过一系列优化措施,如多头交叉注意力机制的高效实现、特征归一化策略的合理应用等,提高了模型在推理阶段的计算效率。这些优化措施使得模型能够在有限的计算资源下,快速地处理输入数据并生成准确的决策输出。例如,在实际的自动驾驶场景中,VLM-AD能够在毫秒级的时间内完成对复杂交通环境的感知、理解和决策规划,为车辆的实时控制提供了有力支持。

  • 硬件兼容性与资源利用:VLM-AD还考虑到了与现有自动驾驶硬件平台的兼容性。由于在推理阶段不依赖VLM,模型可以更容易地部署在各种计算资源受限的车辆环境中,如仅配备中等性能GPU或专用自动驾驶芯片的车辆。此外,VLM-AD对计算资源的高效利用也降低了系统的功耗和成本,提高了自动驾驶系统的整体性价比。这使得VLM-AD不仅在技术上具有创新性,而且在实际应用中具有很高的可行性和推广价值,为自动驾驶技术的大规模商业化应用奠定了基础。

2. VLM-AD方法概述

d2a191923bb872a80e10e74a0e7c6c8d.png

2.1 VLM作为教师模型的角色

VLM-AD方法中,视觉语言模型(VLM)扮演着至关重要的教师模型角色。VLM通过其强大的多模态处理能力,能够将视觉信息与语言知识相结合,为自动驾驶模型提供丰富的推理信息。在训练过程中,VLM作为教师,向端到端自动驾驶模型提供额外的监督信号,这些信号不仅包括结构化的动作标签,还涵盖了非结构化的推理信息。这种监督方式使得自动驾驶模型能够学习到更深层次的特征表示,从而更好地理解驾驶环境中的各种因素及其相互关系。

VLM的教师角色主要体现在以下几个方面:

  • 提供推理知识:VLM能够根据视觉输入生成详细的文本描述,这些描述包含了对驾驶场景的深入理解和推理。例如,VLM可以解释为什么在特定情况下需要减速或变道,这种推理知识对于自动驾驶模型来说是宝贵的补充,有助于其学习如何在复杂场景中做出合理的决策。

  • 增强特征表示:通过与VLM的交互,自动驾驶模型可以学习到更丰富的特征表示。VLM的输出作为监督信号,引导自动驾驶模型关注那些对驾驶决策至关重要的视觉和语言特征,从而提高模型对驾驶环境的感知和理解能力。

  • 促进知识迁移:VLM在预训练过程中积累了大量的通用知识,这些知识可以通过教师模型的角色传递给自动驾驶模型。这种知识迁移使得自动驾驶模型能够在有限的标注数据下,更好地泛化到未见过的驾驶场景中,提高模型的适应性和鲁棒性。

2.2 结构化与非结构化监督信息的结合

VLM-AD方法的核心创新之一是将结构化和非结构化的监督信息相结合,以加强端到端自动驾驶模型的训练。这种结合方式充分利用了VLM在多模态推理方面的优势,为自动驾驶模型提供了更全面的指导。

  • 结构化监督信息:结构化监督信息主要指明确的动作标签,如加速、减速、左转、右转等。这些标签为自动驾驶模型提供了清晰的指令,使其能够直接学习到在特定情况下应采取的具体行动。通过这种方式,模型可以快速掌握基本的驾驶规则和操作,提高其在常见场景下的性能。

  • 非结构化监督信息:非结构化监督信息则侧重于对驾驶场景的详细描述和推理。VLM生成的文本描述包含了对环境的观察、对潜在风险的评估以及对驾驶决策的解释等内容。这些信息有助于自动驾驶模型理解驾驶行为背后的逻辑和原因,从而在面对复杂或未知场景时,能够进行更合理的推理和决策。

将结构化和非结构化监督信息相结合,具有以下优势:

  • 提高模型泛化能力:结构化监督信息使模型能够学习到明确的驾驶规则,而非结构化监督信息则帮助模型理解这些规则背后的原理。这种结合使得模型不仅能够在已知场景中表现良好,还能更好地适应新的、未见过的场景,提高其泛化能力。

  • 增强模型的可解释性:非结构化监督信息中的详细描述和推理过程为模型的决策提供了清晰的解释。这使得自动驾驶模型的决策过程更加透明,便于开发者和研究人员理解模型的行为,也为模型的安全性和可靠性提供了保障。

  • 促进模型的优化和调整:通过分析非结构化监督信息中的推理内容,开发者可以发现模型在特定场景下的不足之处,并针对性地进行优化和调整。同时,结构化监督信息的明确性也有助于快速定位和解决模型在执行具体动作时的问题,从而不断提高模型的性能。

3. VLM文本注释生成

3.1 自由形式推理注释

在VLM-AD方法中,自由形式推理注释是通过视觉语言模型(VLM)生成的,以增强端到端自动驾驶模型对驾驶场景的理解。这种注释方式允许VLM以自然语言的形式表达对驾驶环境的观察、分析和推理,从而为自动驾驶模型提供丰富的背景信息和决策依据。

  • 注释生成过程:首先,VLM接收来自车辆传感器的视觉输入,如摄像头捕捉的图像序列。然后,VLM根据预设的提示(prompts),生成关于当前驾驶状态、未来可能动作以及背后推理的自由形式文本。例如,VLM可能会描述当前道路状况、周围车辆的行为、交通信号的状态,并解释为什么建议采取特定的驾驶动作。这些文本注释不仅包含了对视觉场景的直接描述,还融入了VLM对驾驶逻辑和常识的推理,使得自动驾驶模型能够学习到更深层次的驾驶知识。

  • 注释的应用:生成的自由形式推理注释被用作训练数据的一部分,与传统的轨迹监督标签相结合。在训练过程中,自动驾驶模型通过学习这些注释,能够更好地理解驾驶场景中的各种因素及其相互作用,从而提高其在复杂环境下的决策能力。例如,当模型面对一个未见过的交通场景时,它可以根据之前学习到的推理知识,推断出合理的驾驶策略,而不是仅仅依赖于记忆中的轨迹模式。

  • 数据集的构建:为了充分利用VLM生成的自由形式推理注释,研究者构建了一个包含大量此类注释的数据集。这个数据集不仅涵盖了各种常见的驾驶场景,还包括了一些长尾事件和具有挑战性的场景,以确保自动驾驶模型能够在广泛的条件下进行有效的学习和泛化。通过对这个数据集的训练,模型能够学习到更全面的驾驶知识,提高其在实际应用中的性能和安全性。

3.2 结构化动作注释

结构化动作注释是VLM-AD方法中另一种重要的监督信息,它以明确的动作标签形式提供给端到端自动驾驶模型。这些动作标签定义了车辆在特定情况下的具体操作,如加速、减速、左转、右转等,为模型提供了清晰的指令和目标。

  • 注释的定义与分类:结构化动作注释将驾驶动作分为多个类别,每个类别对应一种特定的驾驶操作。例如,可以将动作分为“控制动作”(如加速、减速、保持速度)、“转弯动作”(如左转、右转、直行)和“车道动作”(如变道、并线、保持车道)等。这种分类方式使得模型能够更精确地理解和执行驾驶任务,同时也便于对模型的性能进行评估和优化。

  • 注释的生成与应用:VLM根据视觉输入和预设的提示,为每个驾驶场景生成相应的结构化动作注释。这些注释直接指导自动驾驶模型在特定情况下的操作,帮助模型快速掌握基本的驾驶规则和技能。在训练过程中,模型通过学习这些结构化动作注释,能够更准确地预测和执行驾驶动作,提高其在常见场景下的性能和可靠性。例如,当模型检测到前方有障碍物时,它可以根据之前学习到的结构化动作注释,迅速做出减速或变道的决策,以避免碰撞。

  • 与自由形式推理注释的结合:结构化动作注释与自由形式推理注释相结合,为自动驾驶模型提供了更全面的监督信息。结构化注释明确了具体的驾驶动作,而自由形式注释则提供了这些动作背后的推理和解释。这种结合使得模型不仅能够知道在特定情况下应该做什么,还能够理解为什么这样做,从而在面对复杂或未知场景时,能够进行更合理的推理和决策。例如,当模型需要在交叉路口转弯时,结构化动作注释告诉它应该左转,而自由形式推理注释则解释了为什么在这个时候左转是安全的,以及需要注意哪些潜在的风险。通过这种方式,模型能够在保证安全的前提下,更加灵活和智能地完成驾驶任务。

4. 辅助头设计与功能

4.1 文本特征对齐

在VLM-AD方法中,文本特征对齐是辅助头设计的关键组成部分,旨在将视觉语言模型(VLM)生成的文本特征与端到端自动驾驶模型的内部特征表示进行有效对齐。这一过程对于模型学习如何将VLM提供的丰富文本信息转化为可操作的驾驶决策至关重要。

  • 对齐机制:文本特征对齐通过多头交叉注意力(MHCA)机制实现。具体来说,初始化三个可学习的文本查询(text queries),分别对应于当前动作、未来动作预测和推理描述。这些查询与自车特征(ego features)进行交互,其中文本查询作为注意力的查询(query),而自车特征同时充当键(key)和值(value)。通过这种方式,模型能够学习到如何将文本信息与视觉感知到的驾驶场景特征相结合,生成更新的文本查询,这些查询随后与自车特征拼接,并通过多层感知机(MLP)层处理,以生成最终的特征对齐输出。

  • 归一化策略:受到DINO中控制特征向量平滑度和锐度的知识蒸馏方法启发,VLM-AD采用类似的策略对文本和输出特征进行归一化处理。通过引入不同的温度参数,模型能够产生特征分布而非原始特征值,这有助于输出特征和监督标签之间更好地对齐,从而提高知识蒸馏的对齐质量。这种归一化策略不应用居中操作,因为监督标签被认为是真值。

  • 对齐效果:文本特征对齐的效果通过交叉熵损失来衡量,该损失用于对齐监督和输出特征,以捕获文本传达的关键信息。通过这种方式,模型能够学习到如何将VLM提供的文本特征与自身的特征表示进行有效匹配,从而增强对驾驶场景的理解和推理能力。实验结果表明,这种对齐机制显著提高了模型在复杂驾驶场景下的性能,特别是在nuScenes数据集上的测试中,模型的规划准确性和碰撞率都有了显著的改善。

4.2 结构动作分类

结构动作分类是VLM-AD辅助头设计中的另一个重要功能,它使得模型能够根据VLM提供的结构化动作标签进行精确的动作预测。这一功能对于提高模型在实际驾驶场景中的操作性和安全性至关重要。

  • 分类机制:结构动作分类通过构建一个以自车特征为输入的动作分类头来实现。与文本特征对齐阶段类似,初始化三个可学习的动作查询(action queries),分别对应于控制动作、转弯动作和车道动作。这些查询通过MHCA块与自车特征交互,生成更新的动作查询。然后,这些更新的查询与自车特征拼接,形成动作分类头的特征表示,并传递给MLP层,最终通过Softmax函数生成动作预测。

  • 标签生成:VLM根据预设的问题集生成结构化动作标签,这些问题集涵盖了控制动作、转弯动作和车道动作等多个方面。例如,VLM可以回答“请从控制动作列表中描述自车的动作:{直行、慢行、停止、倒车}”等问题,为每个问题生成一个具体的动作标签。这些标签为模型提供了明确的指导,帮助模型学习在特定情况下应采取的具体行动。

  • 分类效果:结构动作分类的效果同样通过交叉熵损失来衡量,确保模型能够准确地对动作进行分类。这种分类机制使得模型能够根据VLM提供的动作标签,快速准确地做出驾驶决策,提高了模型在实际驾驶场景中的响应速度和准确性。在nuScenes数据集上的实验结果表明,结构动作分类显著提高了模型的动作预测准确率,减少了因错误动作导致的碰撞风险,从而提高了自动驾驶的安全性和可靠性。

5. 实验与评估

ce6f7c59320bf3f118367649f0d4ab49.png

5.1 数据集与实验设置

在 VLM-AD 的实验中,nuScenes 数据集被选为测试平台,这是一个广泛使用的自动驾驶数据集,包含了多种复杂的城市场景和驾驶条件,能够充分检验模型在不同环境下的性能。该数据集涵盖了 1000 个场景,每个场景持续约 20 秒,关键帧在整个数据集上以 2Hz 的频率均匀注释,为模型训练和评估提供了丰富的数据资源。

实验设置方面,VLM-AD 定义了两个平行的辅助任务,以使端到端自动驾驶模型能够从 VLM 中提取所需的知识。对于特征对齐任务,采用交叉熵损失来对齐监督和输出特征,从而捕获文本传达的关键信息。对于动作分类任务,同样应用交叉熵损失来确保准确分类。在训练过程中,使用了 UniAD 和 VAD 的官方代码,并遵循其官方实现中指定的超参数。对于 VLM-AD,定义了两个辅助任务头,每个任务头包含一个具有 8 个头和 3 个交叉注意层的 MHCA 块,并且为 Q1 和 Q2 分别设置了 3 个文本查询。在训练期间,设置了温度参数 τs = 0.1 和 τt = 0.04 来控制特征的锐度,并设置了 λ1 = 1 和 λ2 = 0.1 来平衡 Lalign 和 Laction。所有模型均使用 PyTorch 框架在 8 个 NVIDIA H100 GPU 上进行训练。

5.2 性能提升与碰撞率降低

实验结果表明,VLM-AD 在 nuScenes 数据集上的表现显著优于现有的端到端自动驾驶模型。具体来说,与 UniAD 和 VAD 这两种当前最先进的方法相结合时,VLM-AD 在 L2 规划误差上分别实现了 14.6% 和 33.3% 的显著改善。这表明 VLM-AD 能够更准确地规划车辆的行驶轨迹,减少因规划不准确导致的潜在风险。此外,VLM-AD 还显著降低了碰撞率,对于 UniAD 和 VAD,碰撞率分别降低了 38.7% 和 57.4%。这一结果凸显了 VLM-AD 在提高自动驾驶安全性方面的巨大潜力,通过引入 VLM 的推理能力,模型能够更好地理解和应对复杂的驾驶场景,从而减少事故发生的可能性。

这些性能提升和碰撞率的降低,归功于 VLM-AD 方法中 VLM 作为教师模型所提供的额外监督信息。VLM 生成的自由形式推理注释和结构化动作注释,为模型训练提供了更丰富的数据和更明确的指导,使得模型能够学习到更深层次的驾驶知识和更准确的决策逻辑。此外,辅助头设计中的文本特征对齐和结构动作分类功能,进一步增强了模型对 VLM 知识的吸收和应用能力,从而在实际驾驶场景中实现了更优的性能表现。

6. 相关工作与对比

6.1 端到端自动驾驶系统

端到端自动驾驶系统是近年来自动驾驶领域的一个重要研究方向,它将感知、预测和规划等多个模块整合到一个统一的框架中,旨在减少信息在模块间传递过程中的丢失,提高系统的整体性能和效率。与传统的模块化自动驾驶系统相比,端到端系统具有显著的优势,但也面临着一些挑战。

优势

  • 信息无损传递:在传统的模块化系统中,信息在不同模块之间传递时可能会出现丢失或失真,导致最终的决策不够准确。端到端系统通过直接从传感器输入到控制输出的映射,避免了这种信息丢失,使得模型能够更全面地利用原始数据进行决策。

  • 全局优化:端到端系统可以对整个驾驶过程进行全局优化,而不是像模块化系统那样分别优化各个模块。这种全局优化能够更好地协调不同任务之间的关系,提高系统的整体性能,例如在规划轨迹时可以同时考虑感知到的障碍物和预测的交通流,从而生成更安全、更高效的行驶路径。

  • 数据驱动:端到端系统主要依赖大量的标注数据进行训练,通过学习数据中蕴含的驾驶模式和规律,自动提取有用的特征并建立模型。这种方法不需要手动设计复杂的规则和参数,能够更好地适应不同的驾驶场景和条件,具有更强的泛化能力。

挑战

  • 可解释性差:由于端到端系统通常是一个复杂的神经网络模型,其内部的决策过程难以直观地理解和解释。这给系统的调试、优化和安全性评估带来了困难,也使得开发者和用户难以信任模型的决策。例如,当模型在某个场景下做出错误的决策时,很难确定是哪个部分出了问题,以及如何进行修正。

  • 对数据和计算资源要求高:为了训练一个性能良好的端到端自动驾驶模型,需要大量的高质量标注数据,这些数据的获取和标注成本较高。同时,模型的训练和推理过程需要强大的计算资源支持,这增加了系统的开发和部署成本,限制了其在一些资源受限的场景下的应用。

  • 泛化能力受限:尽管端到端系统在训练数据覆盖的场景下表现出色,但在面对未见过的长尾事件或复杂场景时,其泛化能力可能会受到限制。这是因为模型主要依赖于模仿学习,缺乏对驾驶环境深层次的理解和推理能力,难以像人类驾驶员那样根据常识和经验做出合理的判断和决策。

6.2 基础模型在自动驾驶中的应用

基础模型,如大语言模型(LLM)和视觉语言模型(VLM),在自动驾驶领域得到了越来越广泛的应用。这些模型通过学习大量的文本和图像数据,具备了强大的语言理解和视觉感知能力,能够为自动驾驶系统提供丰富的知识和推理支持。

应用场景

  • 场景理解:VLM可以将视觉信息与语言知识相结合,对驾驶场景进行深入的理解和描述。例如,它能够识别道路标志、交通信号、车辆和行人等对象,并理解它们之间的关系和交互,为自动驾驶模型提供更全面的场景信息。这种场景理解能力有助于模型更好地预测交通流的变化,提前做出合理的决策。

  • 决策规划:基于LLM的自动驾驶系统可以利用其语言理解和推理能力,生成带有解释的行动建议,提高决策的透明度和可解释性。例如,LLM可以根据当前的交通状况和车辆状态,推荐最优的行驶路径,并解释推荐的原因,如避开拥堵路段或选择更安全的路线。此外,LLM还可以评估车道占用率和安全性,实现更像人类的直观场景理解,从而做出更合理的决策。

  • 数据生成:VLM还可以用于生成虚拟的驾驶场景和数据,为自动驾驶模型的训练提供更多的数据资源。通过数据生成,可以在不增加实际数据采集成本的情况下,扩充训练数据集,提高模型的泛化能力和鲁棒性。例如,可以生成不同天气条件、不同时间段和不同交通密度下的虚拟场景,使模型能够学习到更多样的驾驶模式和应对策略。

挑战

  • 模型微调困难:将基础模型直接集成到自动驾驶系统中时,通常需要进行大量的特定领域微调,以适应自动驾驶任务的特点和要求。这种微调过程不仅耗时耗力,而且可能会导致模型的性能下降或出现过拟合现象。例如,为了将LLM的输出转换为精确的数值结果,如规划轨迹或控制信号,需要对模型进行复杂的调整和优化,这增加了系统的开发难度和成本。

  • 推理延迟和计算成本:基础模型通常具有庞大的参数规模和复杂的网络结构,这使得它们在推理过程中的计算成本较高,推理延迟较大。在自动驾驶应用中,实时性是一个关键要求,模型需要在短时间内做出准确的决策和响应。然而,基础模型的高计算成本和延迟可能会限制其在实际驾驶场景中的应用,尤其是在资源受限的车辆环境中。

  • 知识表示和迁移:虽然基础模型具备丰富的知识和推理能力,但如何将这些知识有效地表示和迁移到自动驾驶任务中仍是一个挑战。不同的自动驾驶任务可能需要不同类型的推理和决策支持,如何从基础模型中提取和利用与任务相关的知识,以及如何将这些知识与自动驾驶模型的内部表示进行有效的融合,是实现基础模型在自动驾驶中应用的关键问题。

① 2025中国国际新能源技术展会

自动驾驶之心联合主办中国国际新能源汽车技术、零部件及服务展会。展会将于2025年2月21日至24日在北京新国展二期举行,展览面积达到2万平方米,预计吸引来自世界各地的400多家参展商和2万名专业观众。作为新能源汽车领域的专业展,它将全面展示新能源汽车行业的最新成果和发展趋势,同期围绕个各关键板块举办论坛,欢迎报名参加。

07f0b7ba7294962198b9fdb496fd17bb.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

ad353f7f31256282f00ee866837a2391.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

bbf3087b0defadaedcc3d5980e8e5b73.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

2561eba513ed2e5bf12a019893ed6f17.png

<think>好的,我现在需要处理用户的问题:“vlm指的是视觉语言模型”。首先,我要确定用户提到的“VLM”具体指什么。因为在之前的对话历史中,用户曾询问过理想汽车的E2EVLM双系统,当时VLM被解释为“视觉-激光雷达多模态”系统。但现在用户的问题明显是在问“视觉语言模型”,也就是Vision-Language Model,这通常是自然语言处理计算机视觉交叉的领域。 首先,我需要确认用户是否在同一个上下文中提问,或者是否切换了主题。可能的情况是,用户之前讨论的是自动驾驶系统中的VLM,但现在转而询问另一个领域的VLM,即视觉语言模型。或者用户可能对术语混淆,需要澄清。 接下来,我需要检查之前的对话历史,确保没有误解。在之前的回答中,理想汽车的VLM是指视觉-激光雷达多模态系统,而视觉语言模型则是另一个不同的概念。因此,用户可能在新的问题中切换了话题,需要明确区分这两个缩写。 此时,我需要决定如何回应。正确的做法是首先告知用户VLM在不同领域可能有不同的含义,并分别解释。尤其是当用户之前提到的VLM自动驾驶中代表视觉-激光雷达多模态系统,而现在询问的VLM可能指视觉语言模型时,必须明确两者的区别,避免混淆。 接下来,我需要详细解释视觉语言模型(Vision-Language Model)的定义、应用、技术架构以及实际例子。同时,也需要提及在自动驾驶VLM的不同含义,确保用户理解上下文的不同。需要保持回答结构清晰,分点说明,使用户能够逐步理解这两个概念的不同之处。 另外,要确保使用正确的中文术语,避免专业术语的误用。例如,解释视觉语言模型时,需要提到多模态学习、预训练模型、图像文本对齐等关键技术点。同时,要提供实际应用的例子,如GPT-4V、BLIP-2等,帮助用户具体理解。 还需要考虑用户可能的深层需求。用户可能是在研究自动驾驶技术时遇到了VLM的不同解释,或者在自然语言处理领域接触到视觉语言模型,因此需要明确两者的区别应用场景。因此,在回答中强调上下文的重要性,帮助用户根据具体领域正确理解术语。 最后,确保回答符合之前的系统级指令,使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,结构清晰,分点列出,技术细节准确无误。同时,保持语言简洁,避免冗长,让用户能够快速获取所需信息。</think>在技术领域中,**VLM** 的缩写可能指向不同概念,需结合上下文区分。以下是两种常见定义: --- ### **1. 视觉语言模型(Vision-Language Model)** **定义**:一种结合**视觉(图像/视频)与自然语言**的多模态人工智能模型,核心目标是实现**视觉内容与文本的双向理解与生成**。 #### **关键技术特性** - **多模态对齐**: 建立图像像素与语言词汇的语义关联,例如通过对比学习(Contrastive Learning)对齐特征空间: $$ \mathcal{L}_{\text{CL}} = -\log \frac{e^{\text{sim}(I,T)/\tau}}{\sum_{j=1}^N e^{\text{sim}(I,T_j)/\tau}} $$ 其中$I$为图像特征,$T$为文本特征,$\tau$为温度系数。 - **跨模态生成**: 支持“图生文”(图像描述、问答)“文生图”(文本引导图像生成),典型架构如: - **编码器-解码器**:ViT(视觉编码器) + GPT(文本解码器) - **统一Transformer**:Flamingo、BLIP-2(Q-Former桥接视觉与语言模态) - **零样本迁移**: 通过大规模预训练(如LAION-5B数据集),实现无需下游任务微调的开放域泛化,例如: ```python model.generate("图像中人物的情绪是?", image=img) # 直接输入图像+问题 ``` #### **典型应用场景** | 任务类型 | 示例 | 代表模型 | |------------------|-------------------------------|--------------------| | **图像描述** | 生成“一只猫在沙发上睡觉” | BLIP、OFA | | **视觉问答** | 回答“图片中有多少只动物?” | ViLBERT、Flamingo | | **文生图** | 生成“未来城市夜景” | DALL-E 3、Stable Diffusion | | **多模态推理** | 分析医学影像并输出诊断建议 | BiomedCLIP | --- ### **2. 自动驾驶中的VLM视觉-激光雷达多模态系统)** 在理想汽车等自动驾驶系统中,**VLM** 特指 **Visual-LiDAR Multimodal System**,强调**视觉与激光雷达的融合感知**,与上述视觉语言模型无直接关联。 #### **核心差异对比** | 维度 | 视觉语言模型 (Vision-Language Model) | 自动驾驶VLM (Visual-LiDAR Multimodal) | |--------------------|--------------------------------------------|----------------------------------------| | **输入模态** | 图像 + 文本 | 摄像头图像 + 激光雷达点云 | | **输出目标** | 文本生成/理解 | 3D环境感知与运动控制 | | **关键技术** | 跨模态注意力、对比学习 | 传感器标定、多模态融合 | | **典型模型** | CLIP、GPT-4V | PointPainting、MV3D | --- ### **如何区分两者?** - **看应用领域**: - 若涉及**图像与文本交互**(如AI绘画、智能客服),指向**视觉语言模型**; - 若在**自动驾驶、机器人**场景中讨论,则多为**视觉-激光雷达多模态系统**。 - **看技术文档**: - 视觉语言模型常关联**NLP任务**(如HuggingFace库、CLIP论文); - 自动驾驶VLM则强调**点云与图像融合**(如Waymo、特斯拉技术方案)。 建议根据具体上下文选择解释方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值