例1
设 a > b > 0 a>b>0 a>b>0,证明: a − b a < ln a b < a − b b \dfrac{a-b}{a}<\ln\dfrac ab<\dfrac{a-b}{b} aa−b<lnba<ba−b
证:
\qquad 令 f ( x ) = ln x f(x)=\ln x f(x)=lnx, x ∈ ( 0 , + ∞ ) x\in(0,+\infty) x∈(0,+∞), x x x在 [ b , a ] [b,a] [b,a]上连续,在 ( b , a ) (b,a) (b,a)内可导
\qquad 由拉格朗日中值定理得, ∃ ξ ∈ ( b , a ) \exist\xi\in(b,a) ∃ξ∈(b,a),使得 f ( a ) − f ( b ) a − b = f ′ ( ξ ) \dfrac{f(a)-f(b)}{a-b}=f'(\xi)