微分中值定理之拉格朗日中值定理

本文通过拉格朗日中值定理探讨了函数在连续性和可导性下的重要性质,包括常数函数推论、函数等式证明及不等式求证。例题展示了如何利用该定理解决实际问题,如函数值的等式构造和不等式比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日中值定理

若函数 f ( x ) f(x) f(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]上连续
  • 在开区间 ( a , b ) (a,b) (a,b)内可导

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \dfrac{f(b)-f(a)}{b-a}=f'(\xi) baf(b)f(a)=f(ξ)

其实这就是柯西中值定理 g ( x ) = x g(x)=x g(x)=x的特殊情况。

推论1

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f(x)0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

证明:对于 ( a , b ) (a,b) (a,b)内的任意两点 x 1 < x 2 x_1<x_2 x1<x2 ∃ ξ ∈ ( x 1 , x 2 ) \exist \xi\in(x_1,x_2) ξ(x1,x2)使得 f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) = 0 f(x_1)-f(x_2)=f'(\xi)(x_1-x_2)=0 f(x1)f(x2)=f(ξ)(x1x2)=0,所以 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

推论2

f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f(x)=g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值