拉格朗日中值定理
若函数 f ( x ) f(x) f(x)满足
- 在闭区间 [ a , b ] [a,b] [a,b]上连续
- 在开区间 ( a , b ) (a,b) (a,b)内可导
则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \dfrac{f(b)-f(a)}{b-a}=f'(\xi) b−af(b)−f(a)=f′(ξ)
其实这就是柯西中值定理中 g ( x ) = x g(x)=x g(x)=x的特殊情况。
推论1
若 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f′(x)≡0,则 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内为常数。
证明:对于 ( a , b ) (a,b) (a,b)内的任意两点 x 1 < x 2 x_1<x_2 x1<x2, ∃ ξ ∈ ( x 1 , x 2 ) \exist \xi\in(x_1,x_2) ∃ξ∈(x1,x2)使得 f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) = 0 f(x_1)-f(x_2)=f'(\xi)(x_1-x_2)=0 f(x1)−f(x2)=f′(ξ)(x1−x2)=0,所以 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内为常数。
推论2
若 f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f′(x)=g