计算物理专题:薛定谔方程的辛算法

计算物理专题:薛定谔方程的辛算法

辛算法简介

  • 哈密顿系统、辛流形和辛流形上的几何结构。
  • 我们需要将薛定谔方程做适当的变换,使得它具有辛结构,从而将研究哈密顿力学的辛算法拓展到薛定谔方程的时间演化问题上去

薛定谔方程的辛结构

\begin{matrix} i\hbar \frac{d}{dt}\psi=H\psi \\ \psi = R + i I\\ H=H_R+iH_I\\ \\ \end{matrix}

其中H_R是实对称矩阵,H_I是实反对称矩阵

可以变换得到:\hbar\frac{d}{dt}\begin{pmatrix} R\\ I \end{pmatrix}=\begin{pmatrix} H_I & H_R\\ -H_R & H_I \end{pmatrix}\begin{pmatrix} R\\ I \end{pmatrix}\rightarrow \hbar \frac{d}{dt}\psi = K\psi

  • 通过复杂的变换,可得到K为一个实反对称矩阵且为无穷小辛阵

\begin{matrix} K^T=-K\\ K^TJ+JK=0 \end{matrix}

其中:J=\begin{pmatrix} 0 &E \\ -E& 0 \end{pmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值