设有齐次线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
a
1
n
x
n
=
0
a
21
x
1
+
a
22
x
2
+
⋯
a
2
n
x
n
=
0
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
a
m
n
x
n
=
0
(1)
\begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots a_{1n} x_n = 0 \\ a_{21} x_1 + a_{22} x_2 + \cdots a_{2n} x_n = 0 \\ \cdots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots a_{mn} x_n = 0 \end{cases} \tag{1}
⎩
⎨
⎧a11x1+a12x2+⋯a1nxn=0a21x1+a22x2+⋯a2nxn=0⋯am1x1+am2x2+⋯amnxn=0(1)
记
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
m
1
a
m
2
⋯
a
m
n
)
,
x
=
(
x
1
x
2
⋮
x
n
)
\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix}, \hspace{1em} \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn
,x=
x1x2⋮xn
则
(
1
)
(1)
(1) 式可写成向量方程
A
x
=
0
(2)
\boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \tag{2}
Ax=0(2)
定义 1(解向量) 若
x
1
=
ξ
11
,
x
2
=
ξ
21
,
⋯
,
x
n
=
ξ
n
1
x_1 = \xi_{11},x_2 = \xi_{21}, \cdots, x_n = \xi_{n1}
x1=ξ11,x2=ξ21,⋯,xn=ξn1 为
(
1
)
(1)
(1) 的解,则
x
=
ξ
1
=
(
ξ
1
ξ
2
⋮
ξ
n
)
\boldsymbol{x} = \boldsymbol{\xi}_1 = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}
x=ξ1=
ξ1ξ2⋮ξn
称为方程组
(
1
)
(1)
(1) 的 解向量,也就是向量方程
(
2
)
(2)
(2) 的解。
根据向量方程 ( 2 ) (2) (2),解向量具有如下性质和证明:
性质 1 若 x = ξ 1 , x = ξ 2 \boldsymbol{x} = \boldsymbol{\xi}_1, \boldsymbol{x} = \boldsymbol{\xi}_2 x=ξ1,x=ξ2 为向量方程 ( 2 ) (2) (2) 的解,则 x = ξ 1 + ξ 2 x = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 x=ξ1+ξ2 也是向量方程 ( 2 ) (2) (2) 的解。
证明 因为 A ( ξ 1 + ξ 2 ) = A ξ 1 + A ξ 2 = 0 + 0 = 0 \boldsymbol{A}(\boldsymbol{\xi}_1 + \boldsymbol{\xi}_2) = \boldsymbol{A} \boldsymbol{\xi}_1 + \boldsymbol{A} \boldsymbol{\xi}_2 = \boldsymbol{0} + \boldsymbol{0} = \boldsymbol{0} A(ξ1+ξ2)=Aξ1+Aξ2=0+0=0,所以 x = ξ 1 + ξ 2 \boldsymbol{x} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 x=ξ1+ξ2 满足方程 ( 2 ) (2) (2),即为向量方程 ( 2 ) (2) (2) 的解。
性质 2 若 x = ξ 1 \boldsymbol{x} = \boldsymbol{\xi}_1 x=ξ1 为向量方程 ( 2 ) (2) (2) 的解, k k k 为实数,则 x = k ξ 1 \boldsymbol{x} = k \boldsymbol{\xi}_1 x=kξ1 也是向量方程 ( 2 ) (2) (2) 的解。
证明 因为 A ( k ξ 1 ) = k A ξ 1 = k 0 = 0 \boldsymbol{A}(k \boldsymbol{\xi}_1) = k \boldsymbol{A} \boldsymbol{\xi}_1 = k \boldsymbol{0} = \boldsymbol{0} A(kξ1)=kAξ1=k0=0,所以 x = k ξ 1 \boldsymbol{x} = k \boldsymbol{\xi}_1 x=kξ1 满足方程 ( 2 ) (2) (2),即为向量方程 ( 2 ) (2) (2) 的解
定义 2(基础解系) 齐次线性方程组的解集的最大无关组称为该齐次线性方程组的 基础解系。
把向量方程
(
2
)
(2)
(2) 的全体解所组成的集合记作
S
S
S,如果能求得解集
S
S
S 的一个最大无关组
S
0
:
ξ
1
,
ξ
2
,
⋯
,
ξ
t
S_0:\boldsymbol{\xi}_1,\boldsymbol{\xi}_2,\cdots,\boldsymbol{\xi}_t
S0:ξ1,ξ2,⋯,ξt,那么方程
(
2
)
(2)
(2) 的任一解都可由最大无关组
S
0
S_0
S0 线性表示;另一方面,根据性质 1 和性质 2 可知,最大无关组
S
0
S_0
S0 的任何线性组合
x
=
k
1
ξ
1
+
k
2
ξ
2
+
⋯
k
t
ξ
t
(
k
1
,
k
2
,
⋯
,
k
t
为任意实数
)
\boldsymbol{x} = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 + \cdots k_t \boldsymbol{\xi}_t \hspace{1em} (k_1,k_2,\cdots,k_t 为任意实数)
x=k1ξ1+k2ξ2+⋯ktξt(k1,k2,⋯,kt为任意实数)
都是方程
(
2
)
(2)
(2) 的解,因此上式便是方程
(
2
)
(2)
(2) 的通解。