线性代数|非齐次线性方程的通解和特解

设有非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ a 2 n x n = b 2 ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ a m n x n = b m (1) \begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots a_{2n} x_n = b_2 \\ \cdots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots a_{mn} x_n = b_m \end{cases} \tag{1} a11x1+a12x2+a1nxn=b1a21x1+a22x2+a2nxn=b2am1x1+am2x2+amnxn=bm(1)
( 1 ) (1) (1) 式可写作向量方程
A x = b (2) \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \tag{2} Ax=b(2)
有对应的齐次线性方程组
A x = 0 (3) \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \tag{3} Ax=0(3)
关于非齐次线性方程租的解与其对应的齐次线性方程组,有如下两个性质和证明:

性质 1 设 x = η 1 \boldsymbol{x} = \boldsymbol{\eta}_1 x=η1 x = η 2 \boldsymbol{x} = \boldsymbol{\eta}_2 x=η2 都是向量方程 ( 2 ) (2) (2) 的解,则 x = η 1 − η 2 \boldsymbol{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1η2 为对应的其次线性方程组 ( 3 ) (3) (3) 的解。

证明 因为 A ( η 1 − η 2 ) = A η 1 − A η 2 = b − b = 0 \boldsymbol{A} (\boldsymbol{\eta}_1 - \boldsymbol{\eta}_2) = \boldsymbol{A} \boldsymbol{\eta}_1 - \boldsymbol{A} \boldsymbol{\eta}_2 = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0} A(η1η2)=Aη1Aη2=bb=0,所以 x = η 1 − η 2 \boldsymbol{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1η2 满足方程 ( 3 ) (3) (3)。得证。

性质 2 设 x = η \boldsymbol{x} = \boldsymbol{\eta} x=η 是方程 ( 2 ) (2) (2) 的解, x = ξ \boldsymbol{x} = \boldsymbol{\xi} x=ξ 是方程 ( 3 ) (3) (3) 的解,则 x = ξ + η \boldsymbol{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η 仍是方程 ( 2 ) (2) (2) 的解。

证明 因为 A ( ξ + η ) = A ξ + A η = 0 + b = b \boldsymbol{A}(\boldsymbol{\xi} + \boldsymbol{\eta}) = \boldsymbol{A} \boldsymbol{\xi} + \boldsymbol{A} \boldsymbol{\eta} = \boldsymbol{0} + \boldsymbol{b} = \boldsymbol{b} A(ξ+η)=Aξ+Aη=0+b=b,所以 x = ξ + η \boldsymbol{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η 满足方程 ( 2 ) (2) (2)。得证。

根据以上两个性质,有非齐次线性方程的通解和特解的定义及证明如下:

定理 如果有非齐次线性方程的一个解 η ∗ \boldsymbol{\eta}^* η(称为 特解),那么非齐次线性方程的 通解
x = k 1 ξ 1 + ⋯ k n − r ξ n − r + η ∗ ( k 1 , ⋯   , k n − r 为任意实数 ) (4) \boldsymbol{x} = k_1 \boldsymbol{\xi}_1 + \cdots k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^* \hspace{1em} (k_1,\cdots,k_{n-r} 为任意实数) \tag{4} x=k1ξ1+knrξnr+η(k1,,knr为任意实数)(4)
其中 ξ 1 , ⋯   , ξ n − r \boldsymbol{\xi}_1,\cdots,\boldsymbol{\xi}_{n-r} ξ1,,ξnr 是对应齐次线性方程的基础解系。

证明 首先证明满足 ( 4 ) (4) (4) 式的 x \boldsymbol{x} x 都是方程 ( 2 ) (2) (2) 的解。根据性质 2,显然可知满足 ( 4 ) (4) (4) 式的 x \boldsymbol{x} x 都是方程 ( 2 ) (2) (2) 的解。

接着证明所有方程 ( 2 ) (2) (2) 的解都满足 ( 4 ) (4) (4) 式。设 x 0 \boldsymbol{x}^{0} x0 为方程 ( 2 ) (2) (2) 的任一解,由性质 1 可知, x 0 − η ∗ \boldsymbol{x}^{0} - \boldsymbol{\eta}^* x0η 是方程 ( 3 ) (3) (3) 的解,从而可以用方程 ( 3 ) (3) (3) 的基础解系线性表示为
x 0 − η ∗ = k 1 0 ξ 1 + k 2 0 ξ 2 + ⋯ k n − r 0 ξ n − r \boldsymbol{x}^{0} - \boldsymbol{\eta}^* = k_1^0 \boldsymbol{\xi}_1 + k_2^0 \boldsymbol{\xi}_2 + \cdots k_{n-r}^0 \boldsymbol{\xi}_{n-r} x0η=k10ξ1+k20ξ2+knr0ξnr

x 0 = k 1 0 ξ 1 + k 2 0 ξ 2 + ⋯ k n − r 0 ξ n − r + η ∗ \boldsymbol{x}^{0} = k_1^0 \boldsymbol{\xi}_1 + k_2^0 \boldsymbol{\xi}_2 + \cdots k_{n-r}^0 \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^* x0=k10ξ1+k20ξ2+knr0ξnr+η
上式显然满足 ( 4 ) (4) (4) 式。得证。

至此,我们就得到了非齐次线性方程的解的结构:

非齐次线性方程的通解 = 对应的齐次方程的通解 + 非齐次方程的一个特解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值