设有非齐次线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
a
2
n
x
n
=
b
2
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
a
m
n
x
n
=
b
m
(1)
\begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots a_{2n} x_n = b_2 \\ \cdots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots a_{mn} x_n = b_m \end{cases} \tag{1}
⎩
⎨
⎧a11x1+a12x2+⋯a1nxn=b1a21x1+a22x2+⋯a2nxn=b2⋯am1x1+am2x2+⋯amnxn=bm(1)
(
1
)
(1)
(1) 式可写作向量方程
A
x
=
b
(2)
\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \tag{2}
Ax=b(2)
有对应的齐次线性方程组
A
x
=
0
(3)
\boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \tag{3}
Ax=0(3)
关于非齐次线性方程租的解与其对应的齐次线性方程组,有如下两个性质和证明:
性质 1 设 x = η 1 \boldsymbol{x} = \boldsymbol{\eta}_1 x=η1 及 x = η 2 \boldsymbol{x} = \boldsymbol{\eta}_2 x=η2 都是向量方程 ( 2 ) (2) (2) 的解,则 x = η 1 − η 2 \boldsymbol{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1−η2 为对应的其次线性方程组 ( 3 ) (3) (3) 的解。
证明 因为 A ( η 1 − η 2 ) = A η 1 − A η 2 = b − b = 0 \boldsymbol{A} (\boldsymbol{\eta}_1 - \boldsymbol{\eta}_2) = \boldsymbol{A} \boldsymbol{\eta}_1 - \boldsymbol{A} \boldsymbol{\eta}_2 = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0} A(η1−η2)=Aη1−Aη2=b−b=0,所以 x = η 1 − η 2 \boldsymbol{x} = \boldsymbol{\eta}_1 - \boldsymbol{\eta}_2 x=η1−η2 满足方程 ( 3 ) (3) (3)。得证。
性质 2 设 x = η \boldsymbol{x} = \boldsymbol{\eta} x=η 是方程 ( 2 ) (2) (2) 的解, x = ξ \boldsymbol{x} = \boldsymbol{\xi} x=ξ 是方程 ( 3 ) (3) (3) 的解,则 x = ξ + η \boldsymbol{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η 仍是方程 ( 2 ) (2) (2) 的解。
证明 因为 A ( ξ + η ) = A ξ + A η = 0 + b = b \boldsymbol{A}(\boldsymbol{\xi} + \boldsymbol{\eta}) = \boldsymbol{A} \boldsymbol{\xi} + \boldsymbol{A} \boldsymbol{\eta} = \boldsymbol{0} + \boldsymbol{b} = \boldsymbol{b} A(ξ+η)=Aξ+Aη=0+b=b,所以 x = ξ + η \boldsymbol{x} = \boldsymbol{\xi} + \boldsymbol{\eta} x=ξ+η 满足方程 ( 2 ) (2) (2)。得证。
根据以上两个性质,有非齐次线性方程的通解和特解的定义及证明如下:
定理 如果有非齐次线性方程的一个解
η
∗
\boldsymbol{\eta}^*
η∗(称为 特解),那么非齐次线性方程的 通解 为
x
=
k
1
ξ
1
+
⋯
k
n
−
r
ξ
n
−
r
+
η
∗
(
k
1
,
⋯
,
k
n
−
r
为任意实数
)
(4)
\boldsymbol{x} = k_1 \boldsymbol{\xi}_1 + \cdots k_{n-r} \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^* \hspace{1em} (k_1,\cdots,k_{n-r} 为任意实数) \tag{4}
x=k1ξ1+⋯kn−rξn−r+η∗(k1,⋯,kn−r为任意实数)(4)
其中
ξ
1
,
⋯
,
ξ
n
−
r
\boldsymbol{\xi}_1,\cdots,\boldsymbol{\xi}_{n-r}
ξ1,⋯,ξn−r 是对应齐次线性方程的基础解系。
证明 首先证明满足 ( 4 ) (4) (4) 式的 x \boldsymbol{x} x 都是方程 ( 2 ) (2) (2) 的解。根据性质 2,显然可知满足 ( 4 ) (4) (4) 式的 x \boldsymbol{x} x 都是方程 ( 2 ) (2) (2) 的解。
接着证明所有方程 ( 2 ) (2) (2) 的解都满足 ( 4 ) (4) (4) 式。设 x 0 \boldsymbol{x}^{0} x0 为方程 ( 2 ) (2) (2) 的任一解,由性质 1 可知, x 0 − η ∗ \boldsymbol{x}^{0} - \boldsymbol{\eta}^* x0−η∗ 是方程 ( 3 ) (3) (3) 的解,从而可以用方程 ( 3 ) (3) (3) 的基础解系线性表示为
x 0 − η ∗ = k 1 0 ξ 1 + k 2 0 ξ 2 + ⋯ k n − r 0 ξ n − r \boldsymbol{x}^{0} - \boldsymbol{\eta}^* = k_1^0 \boldsymbol{\xi}_1 + k_2^0 \boldsymbol{\xi}_2 + \cdots k_{n-r}^0 \boldsymbol{\xi}_{n-r} x0−η∗=k10ξ1+k20ξ2+⋯kn−r0ξn−r
即
x 0 = k 1 0 ξ 1 + k 2 0 ξ 2 + ⋯ k n − r 0 ξ n − r + η ∗ \boldsymbol{x}^{0} = k_1^0 \boldsymbol{\xi}_1 + k_2^0 \boldsymbol{\xi}_2 + \cdots k_{n-r}^0 \boldsymbol{\xi}_{n-r} + \boldsymbol{\eta}^* x0=k10ξ1+k20ξ2+⋯kn−r0ξn−r+η∗
上式显然满足 ( 4 ) (4) (4) 式。得证。
至此,我们就得到了非齐次线性方程的解的结构:
非齐次线性方程的通解 = 对应的齐次方程的通解 + 非齐次方程的一个特解。