大模型LLM入门到进阶 | 大语言模型技术点总结!

本文将开源文本大模型中的LLaMA系列和Qwen系列的各个版本技术点对比总结成表格形式,方便查看和阅览,然后基于一些共性的技术点进行详细介绍。

一、LLaMA

1、模型技术点对比总结

llama系列是Meta开源的文本大模型,采用Transformer Decoder-Only架构,通过阅读几个版本的技术报告,总结一些核心技术数据选取如下表:

2、模型架构与训练

1)LLaMA模型架构,LLaMA1LLaMA2LLaMA3在模型架构上几乎没有变化。模型架构图如下:

在这里插入图片描述

LLaMA Model Architecture

2)LLaMA2从预训练到Chat训练全流程,如下图:

在这里插入图片描述

Overall Training of LLaMA 2-Chat

3)LLaMA3的预训练和后训练流程

Pre-Training of LLaMA 3

在这里插入图片描述

Post-Training of LLaMA 3 (Rejection Sampling, SFT, DPO)

二、Qwen

qwen系列是国内开源比较完整,商业和微调都比较常用的文本大模型,采用Transformer Decoder-Only架构,next-token prediction训练,总结几个系列的核心技术数据:

在这里插入图片描述

三、 技术点一览

1、 量化方法

大模型压缩技术:剪枝、知识蒸馏、量化、低秩分解

模型量化是指以较低的推理精度损失将连续取值(通常为float32或者大量可能的离散值)的浮点型权重近似为有限多个离散值(通常为int8)的过程。量化对象为模型的参数(embedding, 权重weight, 输入input, 输出output),量化形式包括线性量化和非线性量化。

量化分类:

1)QAT(量化感知训练,Quantization Aware Training),在模型训练过程中加入伪量化算子通过训练时统计输入输出的数据范围可以提升量化后模型的精度,适用于对模型精度要求较高的场景,让大模型在训练过程中就适应低精度的表示,增强其处理量化引起的精度损失的能力,使它在量化过程之后保持更高性能。

2)QAF(量化感知微调,Quantization-Aware Fine-tuning),将量化感知训练放在微调阶段里,在模型压缩和保持性能之间取得平衡。

3)PTQ(训练后量化,Post Training Quantization),在大模型训练完成之后进行量化,少量校准数据,适用于追求高易用性和缺乏训练资源的场景。减少大模型的存储和计算复杂度,这种方式精度损失略大。

参考:Training with quantization noise for extreme model compression

2、 RoPE

3、4D并行

4D并行为4种并行手段一起使用:TP,CP,PP,DP

  • DP:数据并行,通过数据集切分成不同的GPU分别训练,每个GPU上都有一个完整模型副本,反向传播之后,模型梯度进行聚合,在不同GPU上模型参数保持同步。实现方式:PyTorch DDP

  • TP:张量并行,是模型并行的一种形式,是在一个操作中进行并行计算,比如矩阵乘法,模型层内并行。实现:Megatron-LM(1D)

  • PP:流水线并行,是模型并行的一种形式,将模型按层分割成若干块,分到不同的GPU上,是在模型各层之间进行并行计算。缺点:后一个阶段需要等前一个阶段执行完毕,训练设备容易出现空闲状态。

  • CP:序列(上下文)并行,实现:Megatron-LM

在这里插入图片描述

LLaMA3:Illustration of 4D parallelism

4、Attention

a) Transformer中的三种注意力机制:Self Attention, Cross Attention, Causal Masked Attention

编码器中的Attention为Self Attention(自注意力),q, k, v三个线性向量都是来自于同一个输入query,是针对同一个序列,使用缩放点积注意力(Scaled Dot-Product Attention)计算注意力分数,从而对值向量进行加权求和,得到输入序列每个token的加权表示。

解码器中的接受编码器结果的Cross Attention(交叉注意力),q来自解码器已经生成的序列,k, v来自编码器输出序列,实现跨序列交互。

解码器最下方的Causal Masked Attention(因果注意力),q, k, v均来自已经生成的序列,并且使用掩码遮掩当前位置之后的序列内容,在生成过程中不会受到未来信息的影响。

b) Transformer的三种注意力的多头形式(也是Transformer在大模型中实际使用的)

  • 编码器输入序列通过Multi-Head Self Attention(多头自注意力)计算注意力权重。

  • 编码器和解码器两个序列通过Multi-Head Cross Attention(多头交叉注意力)进行注意力转移。

  • 解码器的单个序列通过Multi-Head Causal Self-Attention(多头因果自注意力)进行注意力计算。

MHA(Multi-Head Attention):多头注意力,多个注意力头并行运行,每个头都会独立计算注意力权重和输出,然后将所有头输出拼接起来(加权平均)得到最终输出。

Multi head attention 代码实现:
import torch
import torch.nn as nn

class MultiHeadAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.wq = nn.Linear(embed_dim, embed_dim)
        self.wk = nn.Linear(embed_dim, embed_dim)
        self.wv = nn.Linear(embed_dim, embed_dim)
        self.wo = nn.Linear(embed_dim, embed_dim)

    def split(self, hidden):
        batch_size = hidden.shape[0]
        x = hidden.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        return x

    def forward(self, hidden_state, mask=None):
        batch_size = hidden_states.size(0)
        # 线性变换
        q, k, v = self.wq(hidden_states), self.wk(hidden_states), self.wv(hidden_states)
        # 多头切分
        q, k, v = self.split(q), self.split(k), self.split(v)
        # 注意力计算
        scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
        if mask is not None:
            scores = scores.masked_fill(mask == 0, float('-inf'))
        attention = torch.softmax(scores, dim=-1)   # 权重转换
        output = torch.matmul(attention, v)  # 注意力权重与v加权求和
        # 拼接多头
        output = output.transpose(1, 2).contiguout().view(batch_size, -1, self.num_heads * self.head_dim)
        # 线性变换
        output = self.wo(output)
        return output

x = torch.ones(3, 6, 32)
atten = MultiHeadAttention(32, 8)
y = atten(x)
print(y.shape)

c) 对KV Cache的优化:MQA、GQA、MLA

  • KV Cache:大模型在next token递归生成时,新预测的token不会影响之前的k, v计算,将这部分计算结果存储下来就是KV Cache. 它可以提升计算效率,但是却需要额外的显存占用,因此也需要不断降低存储节省空间。transformers库generate函数已经将KVCache封装。

  • MQA(Multi-Query Attention):所有Attention Head共享同一个K、V,可以讲KV Cache减少到原来的1/h,Attention的参数量减少了将近一半,为了模型总参数量不变,通常相应增加FFN/GLU规模,弥补一部分效果损失,目前PaLM、StarCoder、Gemini等大模型在使用。

  • GQA(Grouped-Query Attention):为MHA与MQA之间的过渡版本,将所有Head分为g个组(g可以整除h),每组共享同一对K、V,当g=h时就是MHA,g=1时就是MQA,当1<g<h时,它只是将KV Cache压缩到g/h,压缩率不如MQA,但效果更有保证。目前LLaMA2-70B以及LLaMA3全系列、DeepSeek-V1、ChatGLM2、ChatGLM3等

  • MLA(Multi-Head Latent Attention):对KV Cache进行低秩分解,KV Cache存储低秩投影之后的K、V,并对KV进行整合变换。

参考:
MHA、MQA、GQA的区别 - 小飞侠 (http://www.kexue.love/index.php/archives/513/)
缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA - 科学空间|Scientific Spaces(https://kexue.fm/archives/10091)

5、对比Norm方法:BatchNorm, LayerNorm, RMSNorm

深度学习中,归一化是常用的稳定训练的手段,CV中常用BatchNorm,Transformer常用LayerNorm,RMSNorm是LayerNorm的一个变体。

BatchNorm是对整个batch样本内的每个特征做归一化,消除了不同特征之间的大小关系,同时保留不同样本间的大小关系。CV常用是因为每个通道c可看作一个特征,BN可以把各通道特征图的数量级调整到差不多,同时保持不同图片相同通道特征图间的相对大小关系。

LayerNorm是对每个样本的所有特征做归一化,消除了不同样本间的大小关系,同时保留一个样本内不同特征之间的大小关系。LN更适合NLP领域,保留d维特征(token)在各维度之间的大小关系。

RMSNorm为了节省LayerNorm的计算量而提出,可以节省7%~64%的运算。不需要同时计算均值和方差两个统计量,只需要计算均方根Root Mean Square一个统计量。

RMSNorm计算公式

LLaMA源码中实现的RMSNorm

class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

如有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值